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In small polaron models the hopping amplitude for a carrier from a site to a neighboring site is
reduced due to “dressing” by a background degree of freedom. Electron-hole symmetry is broken if
this reduction is different for a carrier in a singly occupied site and one in a doubly occupied site.
Assuming that the reduction is smaller in the latter case, the implication is that a gradual “undress-
ing” of the carriers takes place as the system is doped and the carrier concentration increases. A
similar “undressing” will occur at fixed (low) carrier concentration as the temperature is lowered,
if the carriers pair below a critical temperature and as a result the “local” carrier concentration
increases (and the system becomes a superconductor). In both cases the “undressing” can be seen
in a transfer of spectral weight in the frequency-dependent conductivity from high frequencies (cor-
responding to non-diagonal transitions) to low frequencies (corresponding to diagonal transitions),
as the carrier concentration increases or the temperature is lowered respectively. This experimen-
tal signature of electron-hole asymmetric polaronic superconductors as well as several others have
been seen in high temperature superconducting oxides. Other experimental signatures predicted by
electron-hole asymmetric polaron models remain to be tested.

I. THE PHYSICS OF HIGH 7 OXIDES similar “undressing” to what takes place in the normal
state upon doping would occur at a fixed (low) carrier

From the beginning of the high 7, era there have been concentration as the temperature is lowered and the sys-
indications that small polarons may play an important  tem be@mgs supercor}ducting. Eurthermore, assuming
role in the physics of these materials.!=1° Among the that it is this “undressing” that drives the supercond‘uu':t—
workers that have not completely abandoned the Fermi ing transition one would conclude that superconductivity
liquid framework for this problem most would agree that should disappear at high carrier concentration'* becausigr
the physics of the normal state may be described by carrifars are already undressed in the normal state. This
heavily dressed quasiparticles.'! There is little agreement physics is qualitatively depicted in Fig. 1.
however concerning the physical origin of this quasipar- 8
ticle dressing, with proposed explanations ranging from ]
strong electron-phonon interactions!~® to electron-spin
interactions (magnetic polarons)”~® to electron-electron
interactions (electronic polarons).!? §

When a high 7T, oxide is doped increasingly with holes
the normal state becomes less “strange”!!, suggesting
that the quasiparticles evolve from being heavily dressed
to being lightly dressed, or undressed. In other words, a
gradual undressing of carriers occurs as the carrier den-
sity increases. Direct evidence for this process is seen ' H /Tc
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in optical absorption in the normal state: a transfer of undressed

spectral weight in the frequency-dependent conductivity pairs

occurs, from high energy excitations (in the 1 to 3 eV >
range) to mid-infrared and lower energy (intra-band) ex- n

citations, as the carrier concentration increases.'?13 Fur-
thérmore the band effective mass as inferred for example
from resistivity is seen to decrease as the carrier concen-
tration increases.

When a low carrier concentration system becomes su-
perconducting the “local” carrier concentration around
a given carrier will also increase, due to pairing, partic-
ularly if the pair wavefunction has a short spatial ex-
tent (coherence length). Thus one may expect that a

FIG. 1. Schematic depiction of the physics of electron-hole
asymmetric polaron systems. Heavily dressed quasiparticles
at low concentrations undress as the temperature is lowered
or as the carrier concentration increases. s.t. denotes spectral
weight transfer, from high to low frequencies (in the direction
of the arrows). Below the curve labeled T. the system is
superconducting. The initial rise in T, versus n is due to the
increasing number of carriers.



The physics just described arises in electron-hole asym-
metric polaron models.
generic property of solids and in particular arises nat-
urally in various models of small polarons, including
the Holstein model’® when slightly generalized. When
electron-hole asymmetry is introduced in these models a
new pairing mechanism arises and superconductivity can
occur under conditions on the interaction parameters in
the models that are vastly less restrictive than in their
electron-hole symmetric counterparts. Put another way,
possibly the most effective way to suppress superconduc-
tivity in a generic model of small polarons is to make it
electron-hole symmetric.

There are many characteristic features of such electron-
hole asymmetric polaron models. Several are seen in high
T, oxide superconductors, others are still experimentally
untested. In addition there are likely to be many other
phenomena predicted by these models that have yet to be
elucidated and quantified. Because electron-hole asym-
metry can arise in any small polaron model, whether elec-
tronic, magnetic or electron-phonon, we hope that work-
ers in these problems will be interested in exploring its
consequences further.

II. ELECTRON-HOLE ASYMMETRIC SMALL
POLARONS

A small polaron model describes the propagation of a
carrier (electron or hole) that carries with it a “cloud”
describing the deformation of a local background degree
of freedom by the carrier.!>=17. This local degree of free-
dom may be an ionic coordinate, as in Holstein’s model,
an electronic degree of freedom (electronic polaron) or a
spin degree of freedom (magnetic polaron). In the sim-
plest realization there is one background degree of free-
dom associated with each lattice site. In a tight binding
description, the possible ground states of a lattice site
with different numbers of carriers are then:

0>1]0>=1[0> (1a)
[T>11>=]1> (1b)
[1>1>=]1> (1c)
[ Ti>2>= (11> (1d)

On the left-hand side of Eq. (1) the first ket describes the
electronic state and the second the background ground
state: |n > denotes the background state when there are
n carriers at the site. On the right-hand side we defined
a “composite state” of electron and background state in
its ground state and denote it with a double bracket.
Coherent motion of these small polarons occurs when
the background degree of freedom remains in the ground

Electron-hole asymmetry is a .

state when the carrier hops from site to site (diagonal
transitions).!® It is assumed that the background state in-
stantaneously relaxes from the ground state correspond-
ing to the old number of carriers to that corresponding to
the new number of carriers as the hopping occurs (anti-
adiabatic limit). The possible hopping amplitudes for a
carrier are then, depending on the number of carriers at
the two sites involved in the hopping process

110> <50 [ 1> (2a)
11> | 1> <500 | 11> (2b)
111> < 1> | 11> (2¢)

where the hopping amplitudes are obtained from the
“bare” hopping amplitude ¢ by multiplying by appropri-
ate overlap matrix elements of the background states:

to =1 < 0|1 >2 (3a)
t1=t<0jl><1)2> (3b)
ty =t < 1]2>2 (3¢)

Our basic assumption is that
<0l >#< 12> (4

in general. Eq. (4) defines what we mean by electron-hole
asymmetric polarons. It implies that the effective model
describing the dressed quasiparticles is not electron-hole
symmetric even if the “bare” model involving only the
carriers was: since {9 # ta, the hopping amplitude for
a single electron and a single hole will be different. We
assume for definiteness that the carriers in Eq. (1) are
electrons, and that

<O0l>>< 12> (5)

so that holes are heavier than electrons. If the converse
of Eq. (5) were to hold the subsequent discussion would
still apply provided the words “electron” and “hole” are
interchanged.

The assumption Eq. (5) implies that the deformation
of the background state induced by the first electron is
smaller than that induced by the second electron on a
site. Conversely, the deformation induced by the first
hole on a site is larger than that induced by the second
hole. In a Holstein model for small polarons, this occurs
if the equilibrium position of the oscillator changes by
a different amount in adding the first and the second
carrier to a site. This is schematically shown in Figure
2. Generalized Holstein models with this property will
be discussed in Section V.
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FIG. 2. Schematic depiction of potential wells for elec-
tron-hole asymmetric Holstein model. The full, dashed and
dash-dotted lines show the oscillator potential when the site
has zero, one and two holes respectively (indicated by vertical
arrows on the circles centered at the respective equilibrium
positions). go1 and ¢i2 denote the difference in equilibrium
positions when the site has zero and one hole, and - one and
two holes, respectively; go1 > gqi2- In the electron-hole sym-
metric model ¢o1 = ¢12.

The hopping amplitude for a single hole in such a sys-
tem is t3. For a system with hole density n per site the
average hopping amplitude is

t(n) =ta(l — n)+t1n =ty + nAt (6a)

At =1t — 15 (6b)

since n is the probability that another hole of opposite
spin will occupy one of the two sites involved in the hop-
ping process. Eq. (6) is correct only to lowest order in n
but is sufficient for our purpose since we will be interested
in systems with low carrier concentration only.

The conductivity sum rule states that the integrated
optical absorption for intra-band processes is given by

[ dars() = 2 o

2m*

with oy the frequency-dependent real part of the conduc-
tivity (per site), n the number of carriers per site and m*
the effective mass. w,, is a high frequency cutoff that al-
lows only for intra-band processes. The effective mass in
a tight binding model is

L
™ et ®)

with a the lattice spacing (we assume a simple hypercubic
lattice). In our case, the hopping amplitude Eq. (6)
varies with carrier concentration so that the integrated
optical absorption

me dwoy(w) = %@ (9)

increases faster than linearly with carrier concentration.
The extra spectral weight in the intra-band spectrum
arises from a decrease in the spectral weight of nondiago-
nal transitions: hopping processes where the background
degrees of freedom end up in excited states rather than
the ground state.

Thus, an essential feature of electron-hole asymmetric
polarons is that as a function of doping a transfer of spec-
tral weight in the frequency-dependent conductivity from
non-diagonal to diagonal transitions occurs. Such behav-
ior is seen in high 7, oxides doped with holes:'%13 the
intra-band spectral weight increases more rapidly than
linear with hole concentration, and the absorption in the
visible range (1 to 3 eV) decreases correspondingly. This
indicates that the carriers gradually undress as the hole
concentration increases.

III. SUPERCONDUCTIVITY FROM
ELECTRON-HOLE ASYMMETRIC POLARONS

The hopping amplitude for a hole polaron of spin &
between sites z and j can be written as

tgj =17+ At(niy_g + n]-,_a) (10)

with n; _, the number of holes of opposite spin at site ¢
and At given by Eq. (6b). Eq. (10) ignores the possibil-
ity of holes of opposite spin being present at both sites
i and j, but this will be unimportant at low hole con-
centration. A Hamiltonian that describes the low-energy
physics of these small polarons is then

H=- Z tfj(c;-rgcj,, + h.c)+ UZ"iT”il +V Z nin;

<f,j> i <if>
(11)

with U and V repulsive on-site and nearest neighbor
interactions.'® For a dilute system of hole carriers, this
Hamiltonian can be accurately studied within the BCS
framework,'® and leads to superconductivity if the pa-
rameters satisfy the condition

At U v
— 1+ —)14—) - 2
t2 > \/( + Qth)( + 2t2) ! (1 )

with z the number of nearest neighbors to a site. If the
single hole hopping amplitude ¢5 is very small compared
to t1 we have t3 << At and Eq. (12) simplifies to

juv
At — 1
> 4z (13)

The physics leading to superconductivity is gain of ki-
netic energy: when polarons pair their mobility increases
and the energy is lowered. The mobility of a bound pair
can be calculated explicitely and is found to be always
larger than 1/2 the single particle mobility.?° In other



words, a polaron pair is lighter than the sum of its indi-
vidual components.

Figure 3 shows the critical temperature resulting from
this model for a typical set of parameters. It also shows
the pair coherence length and the single particle effective
mass in the normal state (Eqs. (6a), (8)). The coherence
length increases monotonically with hole doping, and the
single particle effective mass decreases. Thus a cross-over
occurs from a strong coupling regime at low hole doping
to a weak coupling regime at high hole doping, where
conventional behavior in all properties should be seen. In
particular, the BCS gap ratio attains the weak coupling
value 3.53 for large hole doping and is larger for low hole
doping.1®
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FIG. 3. Critical temperature versus hole concentration
(solid line) for parameters given in the figure. Also shown
is the coherence length (dash-dotted line) and the effective
mass enhancement ( dashed line) versus hole concentration.

The quasi-particle energy in this model is given by the

usual form
Ep = 1f(ep — p)? + A2 (14)

with p the chemical potential and e the single particle
band energy. The gap function Ay is only a function of
band energy and of the form

A = A (5—7;- + c) = Aler) (15)
with

D = 2:t(n) (16)

the bandwidth (that increases with hole doping) and A,
and ¢ parameters obtained from solution of the BCS
equations. Analytic forms for these as well as for the
critical temperature can be found in the weak and strong
coupling limits.1®

The quasiparticle energy can be rewritten as

Ey = \/az(ek —pu—v)2+ A2 (17a)
2
a=4/1+ (1‘;—72) (17b)
Ay = AE"‘) (17¢)
1 Ap

Figure 4 shows the behavior of the quasiparticle energy,
gap function and coherence factors

1 €p —
2 _ 1 k [
uk—2<1+_Ek >

2 _ 1 €k —

Uk ps 9 (1 Ek )
versus band energy. Because the minimum in the quasi-
particle energy is shifted from p to g + v, various
characteristic features arise in tunneling and photoe-
mission experiments.'® In particular, tunneling charac-
teristics exhibit an asymmetry of universal sign, and a
thermoelectric voltage (also of universal sign) appears
across a tunnel junction when the quasiparticles on both
sides obey different distribution functions.?! These effects
should be experimentally observable.
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FIG. 4. Quasiparticle energy, gap function and co-
herence factors versus hole band energy for gap slope
8§ = An/(D/2) = 0.2. The vertical dot-dashed and dotted
lines indicate the positions of the chemical potential g and of

the quasiparticle energy minimum g + v.



IV. BOSE DECONDENSATION VERSUS PAIR
UNBINDING

In electron-hole symmetric bipolaron models of super-
conductivity, the transition to the normal state generally
occurs through Bose decondensation, and bound pairs
still exist above T,.2?2 More generally, it is assumed that
such a scenario always occurs when the pair coherence
length is short.22 However, this is not so in the models
considered here. Qualitatively, the coherence length is
given approximately by

g~ (19)

with ¢, the pair binding energy and t; the single particle
hopping amplitude. The Bose condensation temperature
is in the range where center of mass excitations of the
pairs start to play a significant role and is proportional
to the pair hopping amplitude

TBose ¢, (20)

while the BCS pair unbinding transition is proportional
to the pair binding energy

TBCS ~ ¢ (21)

Thus even in the regime of short coherence length (£ < 1)
one may have

TBCS <« TBose (22)

provided that the pair hopping amplitude is larger than
the single particle amplitude

t, >> 1y (23)

While Eq.(23) cannot happen for electron-hole symmet-
ric polarons (in fact, the opposite occurs) it is an essential
feature of the models considered here. In particular, in
the strong coupling regime (13 << At) the pair binding
energy and pair hopping amplitude are given by*®

€ =2zt, — V (24a)
2At?
t, = 24

so that the pair binding energy can be arbitrarily small
for a finite value of the pair hopping amplitude.

In other words, in the models discussed here in the
regime of low hole concentration the pairs are of small
spatial extent and yet highly mobile and weakly bound.
When the temperature is raised, they will dissociate well
before the temperature range where center of mass exci-
tations of the pairs would have started to play a role (cf
Eq. (22)). This scenario is rather different from what
occurs in electron-hole symmetric polaron models and
should be evident experimentally, e.g. by a sharp break
in the Knight shift as the temperature is raised across
the critical temperature. Only at an extremely low hole
concentration does a cross-over to a Bose-condensation
description occur in the models considered here.?*

V. MODELS FOR ELECTRON-HOLE
ASYMMETRIC POLARONS

Because electron-hole is not an exact symmetry of
solids, any microscopic model for the description of phys-
ical reality should, in principle, contain electron-hole
symmetry-breaking terms, which should only be dis-
carded after establishing that they are irrelevant for the
physics of interest. Here we discuss how electron-hole
symmetry-breaking terms arise in small polaron models
in a natural way.

A. Generalized Holstein Models

The site Hamiltonian for a conventional Holstein model
is given by!®

21
H; = 21;:/1 + §in2 + agin; + Unipng (25)

with (p;; ¢) canonical coordinates of a vibrational degree
of freedom of mass M and force constant K. This model
is electron-hole symmetric; however, various modifica-
tions of it to include physical effects that occur in nature
will turn it electron-hole asymmetric,?® namely:

(i) Allow for a variation of the electron-phonon cou-
pling constant o with site occupation.?® A possible
parametrization is

/

a— o+ %—(n, —-1). (26)

This is equivalent to allowing for dependence of the on-
site repulsion U on the phonon coordinate ¢;.

(i1) Allow for a variation of the stiffness K with site
occupation

K — K(n;) (27)

(iii) Allow for a variation of the electronic mass with
site occupation, M — M(n;). (This effect is likely to
be small). Both this as well as the effect (ii) imply a
variation of the vibration frequency wo = \/K/M with
site occupation.
(iv) Anharmonic effects:?":2% the potential energy is
modified to
1 72 1 7 2 4
~Kq° — =Kq* + Bq (28)
2 2

(8> 0).

The overlap matrix element of the oscillator ground
state wave function with » and n' carriers at the site is
given by ‘

-

< n|n/ >=
an + ap

Q(anan:)% ? - s (gn =g 1)°
——| e *lemten (29)



with
__a(m)  4Ba(n)® 4
mW="Kw)" T Kn)t (302)
K(n)M
o, = YE@M(n) (30b)
h

If any of the above-listed situations occurs,

<01>#< 12> (31)

and electron-hole asymmetry results. Consideration of
the physical nature of each of these effects leads to
the conclusion?® that the sign of the symmetry break-
ing is always such that, in the electron representation,
< 0|1 >>< 1|2 >, as assumed in the previous sections.
Furthermore, the magnitude of the symmetry breaking
effects needed to satisfy the condition for superconduc-
tivity Eq. (12) is estimated to be rather modest: of order
10% for cases (i) or (ii), and less than 1% for case (iv),
when these effects are considered separately. (In real-
ity, they are likely to act together.) The magnitude of
polaronic band narrowing in the regime where the cri-
terion for superconductivity is satisfied is much smaller
than in the conventional electron-hole symmetric Hol-
stein model.??

For the particular case (i), the usual Lang-Firsov
canonical transformation?® is easily generalized. New bo-
son creation and annihilation operators and new fermion
operators are introduced through the relations

7
a; = a; + g(n; + %nn"u) (32a)
Cic = XisCio (32b)
with
Xip = I+, o )(a—a:) (33a)
— (5t y1/2
g= (hwo) (33b)
2
o
“=3% (33

Here, a; is the new phonon destruction operator, &,
the new fermion destruction operator and €; the polaron
binding energy. The site Hamiltonian is diagonal in terms
of the new operators:
IS | _ _
H; = hwo(ai a; + 5) + UeffniTnil — €pn; (34)

with39

Uegj =U l(2+2 '+°‘—'2) (35)
eff = Ka oo 9

the effective on-site interaction. The inter-site hopping
operator

Hy=-tY (cd,cio+he) (36)
<ij>

o

is rewritten in terms of the new operators as

Hio=-tY (X} Xioel G0+ hec) (37a)

<ii>
Xio = I(+%A, o )(ai-al) (37b)

and the Hamiltonian
H=>Y Hi+H (38)

describes the full dynamics of the problem in terms of
the new “polaron operators” &;, and the new phonon
operators that refer to vibrations around the equilibrium
position for given electronic occupation of the site

1
%=¢q+ E(ani + o'nipngy). (39)

The situation here is somewhat more complicated than
in the usual case because the “dressing operators” Eq.
(37b) depend on fermion in addition to boson operators.
The coherent hopping amplitude resulting from the zero-
phonon processes is obtained by taking the expectation
value of Eq. (37b) in the zero-phonon states, yielding the
matrix elements Eq. (29) which for this case are

_ o2
< Xio >0 (Ri—g =0) =< 0|1 >= ¢~ &= (40a)
< Xio >0 (ﬁi,_a‘ = 1) =< 1|2 >=¢ *Khwo (40b)

In the zero-phonon subspace the Hamiltonian Eq. (38)
takes the form Eq. (11), without the V term. Near-
est neighbor interaction will arise from direct Coulomb
interaction as well as from virtual hopping processes.!

B. Electronic tight binding models

In the derivation of a tight binding model from first
principles, a variation of the hopping amplitude with site
occupation arises from the following two effects:

(i) An off-diagonal matrix element of the Couloub in-
teraction between Wannier orbitals at nearest neighbor
sites.32:33

(i1) The “orbital expansion” that occurs when a sec-

ond electron is adeed to an orbital that already has

an electron, arising due to the strong on-site Coulomb
repulsion.3%10:3% In other words, higher energy atomic
orbitals become partially occupied. Because of this the



hopping amplitudes to or from such a doubly occupied
site will be different from that of a singly occupied site.

The second effect in particular is a polaronic effect:
when an electron leaves a doubly occupied site the second
electron relaxes to a new orbital configuration, and an
overlap matrix element modulates the hopping amplitude
of the first electron. A simple way to describe this physics
is using a tight binding model with two orbitals per site.3¢

First principles calculations bear out these qualita-
tive considerations and yield estimates of the variation
of hopping amplitude with occupation.353% It is found
that whenever the hopping amplitudes show substantial
variation with site occupation, it is the hole hopping am-
plitude that is smaller.

C. Spin-fermion Hamiltonian

A Hamiltonian describing the interaction of electrons
with local spin 1/2 degrees of freedom:

H; =(Vn; —wo)o, + Act + Unitng) (41)

has been used in a variety of contexts: to describe ex-
citonic superconductivity,3” to describe coupling to an-
harmonic apex oxygen motion in high T, oxides,?” and
to describe conduction of holes through anions!® to list
just a few. This Hamiltonian gives rise to small polarons
similarly as the Holstein model, and except for the spe-
cial case V = wy, is electron-hole asymmetric. For the
cases where this Hamiltonian has been used, there is no
physical reason that would determine that V = wg.

To illustrate the enlargement of the region in parame-
ter space where superconductivity can occur in the pres-
ence of electron-hole asymmetry we plot in Fig. 5 for the
Holstein model the effective mass enhancement

m* 1 a?
— —__ — 2KRw 492
m <i2>z (42)
versus effective interaction
2
o
Ueff = U - —E (43)

for various values of the oscillator frequency wy. For the
electron-hole symmetric case the condition for supercon-
ductivity is U.sr < 0; as the frequency decreases the
effective mass enhancement that exists when the condi-
tion for superconductivity is met (intersection of straight
lines with left vertical axis) becomes very large. For the
electron-hole asymmetric case instead the condition for
superconductivity Eq. (12) becomes (for V = 0)
*
™ = . (44)

- 2 _ U Uep
m < 0|1 >2 — 5=~

The dashed lines show the condition Eq. (44) for var-
ious values of the overlap < 0|1 > between the ground

states of the oscillator with one and two holes, assuming
for definiteness U/22t = 1. Above a given dashed line
superconductivity can occur for that value of < 0|1 >. It
can be seen that as < 0|1 > increases the region in param-
eter space where superconductivity occurs is greatly en-
larged, and in particular the mass enhancement required
for given fiwg/U is much smaller than in the electron-
hole symmetric case. The optimal situation occurs for
< 0|1 >=1, where adding a second hole does not change
the equilibrium position of the oscillator with respect to
that when it had one hole. For example, for that particu-
lar case if the oscillator frequency is hwo/U = 0.05 super-
conductivity occurs for m* /m ~ 6 while in the electron-
hole symmetric case it occurs only for m*/m ~ 22, 000.
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FIG. 5. Parameter range where superconductivity can oc-
cur in Holstein model. The straight solid lines give the values
of the effective mass enhancement as function of the effective
on-site repulsion (Eq. (43)) for various values of the oscillator
frequency divided by the on-site repulsion: kwo/U = 05, 0.25,
0.1, 0.05, 0.025 and 0.01 (numbers next to the solid lines). In
the electron-hole symmetric case the superconducting bound-
ary is Uess/U = 0 (thick vertical line); superconductivity
occurs to the left of that line. The dashed lines give the crite-
ria for superconductivity in the asymmetric case, for various
values of the overlap < 0|1 > (numbers next to dashed lines);
superconductivity occurs in the region above a given dashed
line for that value of < 0|1 >.

In summary, a variety of models of small polarons are
naturally extended to describe electron-hole asymmetric
polarons. These and other models can be used to describe
polaronic effects arising from various physical processes
such as electron-phonon, electron-electron or electron-
spin interactions {even the Holstein model can be used
to describe electronic effects if the excitation energy wo
is an electronic energy scale). Superconductivity is much
easier to achieve if electron-hole asymmetry is present.
The essential point is that the electron-hole symmetric
special cases of these models that are commonly studied



represent approximations that are questionable in light
of the fact that electron-hole symmetry breaking terms
do occur in nature and significantly modify the physics
of these models.

VI. COUPLING OF LOW AND HIGH ENERGY
PHYSICS

The conductivity sum rule for a system governed by
the tight binding Hamiltonian Eq. (11) yields3®

Wi 2.2
/ o9 () = meta”
0

Here, 6 denotes a principal direction in the crystal lattice
(assumed hypercubic). as is the lattice spacing, and wy,
is a high frequency cutoff. T is the kinetic energy in
direction é:

—T5 > (45)

= 17,1 5(cl s pCio + hc) (46)

i,0

with the hopping amplitude given by Eq. (10). The
expectation value of Tj is

< Tgs>= —t(n) Z
— 2At2 [< cwcz o >< i —oCiyso > +h.c.]
=<T>+<T

<cz+50cw+hc >

(47)

As the system becomes superconducting, the anomalous
expectation values in the second term of Eq. (47) be-
come non-zero and the kinetic energy decreases (the first
term in Eq. (47) is essentially unchanged when T is low-
ered below T;). Thus, the integrated optical absorption
Eq. (45) increases. Quantitative examples are given in
Ref. 39. This extra spectral weight goes into the 6-
function response at zero frequency that determines the
London penetration depth, together with the spectral
weight coming from the decrease in optical absorption
at frequencies below the superconducting gap.*0

Where is this extra spectral weight coming from? It
does not come from any energy scale associated with the
Hamiltonian Eq. (11). However we should remember
that Eq. (11) is a low-energy effective Hamiltonian that
only accounts for the diagonal transitions in the back-
ground degrees of freedom. The conductivity sum rule
reminds us that there is also the possibility of high en-
ergy non-diagonal transitions in the background states,
and a decrease in the weight of those transitions should
account for the extra spectral weight that appears at low
energies. The situation is schematically shown in Fig. 6.
The extra spectral weight is given by

2,2
we ay

§Ap = ~TH > (48)
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FIG. 6. Schematic depiction of spectral weight redistri-
bution in the frequency-dependent conductivity as the sys-
tem goes superconducting. Both the “missing areas” arising
from intra-band (diagonal) transitions (diagonally hatched)
and from non-diagonal transitions (horizontally hatched) con-
tribute to the é-function at zero frequency that determines the
London penetration depth.

The frequency-dependent conductivity can be written
in a spectral representation (at zero temperature) as

Eym — Ey

Z|<0|J6|M>| 6((.4.)— - ) (49)
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where Fj is the energy of the m-th excited state and Js
is the current operator in the tight binding model. We
denote by |n[” > the m-th excited state of the background
degree of freedom at site ¢ when there are n; electrons at
the site. For an optical transition where an electron hops
from site 7 to site j the matrix elements involving the
background degrees of freedom are

R;?m, =< nzln;m >< nj|n;-m' > (50)
where n; and n} are site occupation numbers before and
after the transition, and we assume that initially the
background degrees of freedom are in their ground state
(In; >= |nY >). The optical absorption will be pro-
portional to the square of these matrix elements. The
“diagonal” transition that contributes to the intra-band
spectral weight is R?f. By completeness we have

Z |Rmm —

mm/

(51)

Now for a single hole hopping between two sites
R™(0) =< 1[2™ >< 2[1™ > (52)

while for a hole hopping when there is another hole
present at one of the two sites

RI™ (1) =< 12 >< 1j0™ > (53)



By our assumption Eq. (5) we have then
R(0) < Ri(1) (54)

so that by completeness

S RETOP> Y

(m,m’)#(0,0) (m,m")#(0,0)

Eq. (55) implies that the contribution from the hop-
ping of one hole to the high frequency optical absorption
(non-diagonal transitions) is larger when it is isolated
than when it is in the presence of another hole, while
the converse occurs for the low-frequency intraband ab-
sorption (diagonal transition) (Eq. (54)). The physics
involved is simply the Franck-Condon principle that ex-
plains the distribution in intensity in absorption bands
in molecules,*! and is schematically depicted in Fig. 7.
Thus as holes pair or as the hole concentration increases
through doping a transfer of spectral weight from high
frequencies to low frequencies occurs.

IRE™ (LI (55)

(a)

S

o3 |

(b

FIG. 7. Initial and final states for a hole undergoing an
optical transition to a neighboring site in the absence (a) and
in the presence (b) of another hole. The relative position of
the potential curves for the background degrees of freedom
are shown. Vertical transitions in the background degree of
freedom, that carry large spectral weight, are shown as dashed
lines; note that they occur at a lower total energy for the case
of paired holes than for isolated holes.

In particular for the generalized Holstein models the
matrix elements are given by

(2gnn’)m/2e_g""'
(mh)1/2

< pln'm >= Gom(gnn') = (56a)

1

S (56b)

Gnnt =1
For a transition where the final states at sites 7 and j are
m and m’ we can sum over all possible contributions with
m+ m’ = M so that the total energy of the background
final states is AwoM :

S

m+m/=M

Z G%m(gnini)G(z)m’(gnjn;)

m4+m/=M
= G%M(gnm’i + gnjn;-) (57)

Thus for a single hole hopping between sites 7 and j
the contribution to the optical absorption at frequency
FwoM is G23/(2912), when another hole is present it is
GZ,,(go1 + g12) and when two other holes are present it
is G2,(2g01). Figure 8 shows these probabilities for one
case. The effect of both doping and pairing is to decrease
the number of transitions where a single hole is present
at the two sites involved relative to transitions where
two holes are present. Thus the total spectral weight
gets increasing contribution from Fig. (8b) relative to
Fig. (8a). To calculate the relative contributions of the
variouos hole configurations in the superconducting state
the probability of two holes being at the same or nearest
neighbor sites can be obtained from the superconducting
pair wave function.'®

05 —

0.0

@

05 -

Gom

05 -

0.0 | |
4

FIG. 8. Matrix elements for transition probabilities in gen-
eralized Holstein model, G3,,(g), versus M. hwoM is the en-
ergy of the final state, with wo the oscillator frequency. Cases
(a), (b) and (c) correspond to an isolated hole, and a hole in
the presence of one and two other holes respectively. Note
the shift in spectral weight towards lower frequencies as the
hole concentration increases, and in particular the increase in
the ground-state to ground-state (diagonal) transition prob-
ability at M = 0. g,, is given by Eq. (56b), and for this
example < 0|1 >=0.88, < 1|2 >= 0.47.

Note also that in addition to the M = 0 peak (intra-
band contribution) other low-frequency peaks also grow



in going from (a) to (b) to (c). This may relate to
the growth of the mid-infrared feature in high 7. oxides
seen under doping.'?13 While the simple Holstein model
should not be expected to reproduce the details of the op-
tical spectra observed in high T, oxides we believe that it
may capture the qualitative features, with the excitation
energy wo being of electronic origin and of magnitude a
fraction of an eV.

We have also performed explicit calculations of the var-
ious contributions to the optical absorption in the spin-
fermion model Eq. (41).? While the shift in the relative
weight of the various contributions upon pairing is clearly
illustrated by these resulis it was not possible to estab-
lish quantitatively the equivalence of the extra spectral
weight at low frequencies as given by Eq. (48) and the
part of the optical absorption arising from non-diagonal
transitions in Eq. (49). The reason is that that model,
and tight binding models in general (including the Hol-
stein model), do not conserve total oscillator strength.

VII. DISCUSSION

Within the renormalization group theory of critical
phenomena?® a perturbation is “relevant” if it changes
qualitatively the physics of the system, even if the mag-
nitude of the perturbation is small. We have tried to
argue here that electron-hole symmetry breaking pertur-
bations are “relevant”, in that sense, for the physics of
polaronic systems. Because there is no underlying sym-
metry reason that would exclude such perturbations in
real systems it is necessary to consider them, in particular
with respect to the physics of superconductivity.

Superconductivity arises in electron-hole asymmetric
polaronic systems due to the lowering of kinetic energy
that occurs when carriers pair. The resulting supercon-
ductor exhibits a number of characteristic features as-
sociated with its low energy physics: isotropic s-wave
state, strong dependence of the critical temperature on
carrier concentration, energy-dependent BCS gap func-
tion, branch imbalance, positive pressure dependence of
T, sensitivity to non-magnetic disorder, tunneling asym-
metry, crossover from strong to weak coupling as the car-
rier concentration increases, etc. The transition from the
superconducting to the normal state occurs through pair
unbinding rather than Bose decondensation even in. the
regime where the coherence length is short. Many of
these characteristic features have been seen in high T
oxide superconductors.

The most characteristic feature of these systems how-
ever is the remarkable coupling between low and high
energy physics. When the superconducting gap opens
up, a low energy phenomenon, changes in the optical ab-
sorption are predicted to occur at high frequencies, un-
related to the energy scale of the superconducting gap.
This signature of the underlying physics has been seen
experimentally.®*%5 The detailed temperature and car-
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rier concentration dependence of the effect predicted®®
however has not yet been experimentally tested. Further-
more the related experimental prediction®® that the ob-
served London penetration depth should be shorter than
expected from the normal state effective mass and from
the low-frequency missing area in the conductivity re-
mains open to experimental verification.

The model does not yield a precise first-principles pre-
diction of the high frequency range where changes in
the conductivity should occur, because the microscopic
physics of the underlying polaronic processes have not
yet been entirely clarified. However the phenomenology
predicted by the model is unambiguous: the frequency
range where changes in the optical conductivity should
occur when the system goes superconducting is the same
range where changes in the normal state conductivity
upon doping should occur. Experiments then indicate
that the main range in high T, oxides where a decrease
in absorption should be seen upon pairing is in the visi-
ble (1 to 3 eV). Additionally, shift of spectral weight to
lower frequencies should also be seen from the mid- and
near infrared region. For a given frequency in that range
however this could result in either an increase or decrease
in intensity depending on the doping level.

Experiments in high T, oxides also show a variation of
optical absorption at high frequencies with temperature
in the normal state.***5 Within the class of models con-
sidered here we have found that a variation of the number
of carriers with temperature in the normal state is likely
to occur in the high 7. oxide structures,*® which may
account for this as well as other anomalous normal state
properties. Other observations in high T, oxides such as
variations in the gap magnitude may be accounted for by
generalizing the models discussed here to describe more
than one band*” and by existence of disorder.*®

In summary, superconductivity in electron-hole asym-
metric polaron systems is driven by the “undressing” of
the heavily dressed polaronic carriers that occurs upon
pairing. It parallels the same phenomenon occuring in
the normal state as the carrier concentration is increased.
Dilute carriers become increasingly “free” as the local
carrier concentration increases, and are happy to pay the
price of extra Coulomb repulsion that arises when they
pair in order to achieve this “freer” state. However, if
they are sufficiently “free” in the unpaired state (nor-
mal state at higher carrier concentration) the incentive
to develop pairing correlations disappears. The same ba-
sic physics would apply to any Fermi liquid system where
the quasiparticle dressing is a strong function of the local
carrier concentration, even if the carriers are not strictly
speaking “polaronic” in the conventional sense. If this is
indeed the essential physics underlying the phenomenon
of superconductivity in high 7T, oxides the possibility that
it plays an essential role in other superconductors as well
should not be excluded.
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