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Abstract The Meissner effect and the Spin Meissner effect
are the spontaneous generation of charge and spin current
respectively near the surface of a metal, making a transi-
tion to the superconducting state. The Meissner effect is well
known but, I argue, not explained by the conventional the-
ory; the Spin Meissner effect has yet to be detected. I pro-
pose that both effects take place in all superconductors, the
first one in the presence of an applied magnetostatic field,
the second one even in the absence of applied external fields.
Both effects can be understood under the assumption that
electrons expand their orbits and thereby lower their quan-
tum kinetic energy in the transition to superconductivity. As-
sociated with this process, the metal expels negative charge
from the interior to the surface and an electric field is gener-
ated in the interior. The resulting charge current can be un-
derstood as arising from the magnetic Lorenz force on radi-
ally outgoing electrons, and the resulting spin current can be
understood as arising from a spin Hall effect originating in
the Rashba-like coupling of the electron magnetic moment
to the internal electric field. The associated electrodynamics
is qualitatively different from London electrodynamics, yet
can be described by a small modification of the conventional
London equations. The stability of the superconducting state
and its macroscopic phase coherence hinge on the fact that
the orbital angular momentum of the carriers of the spin cur-
rent is found to be exactly 2/2, indicating a topological ori-
gin. The simplicity and universality of our theory argue for
its validity, and the occurrence of superconductivity in many
classes of materials can be understood within our theory.
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1 Introduction

The Meissner effect [1] is the most fundamental prop-
erty of superconductors. I argue that the Meissner effect
is not accounted for by the conventional BCS-Eliashberg—
London framework generally believed to explain all as-
pects of the superconductivity of conventional superconduc-
tors [2] (termed ‘class 1’ superconductors in Ref. [3]). In-
stead, I propose that superconductivity involves fundamental
physics that is not described by conventional theory, namely:
(i) superconductors expel negative charge from the interior
to the surface [4]; (ii) it requires dominance of hole carrier
transport in the normal state [5, 6]; (iii) it is driven by low-
ering of kinetic energy of the carriers [7—10]; (iv) an electric
field exists in the interior of superconductors [11]; (v) a spin
current exists near the surface, in the absence of applied ex-
ternal fields [12], and (vi) superconducting carriers reside in
mesoscopic orbits of radius 2A7 [13], with Ay the London
penetration depth. I argue that the Meissner effect, exhibited
by all superconductors, cannot be accounted for unless the
above listed effects also exist in superconductors.

2 The Key Physical Elements

Figure 1 shows three key aspects of the physics of supercon-
ductors within the theory discussed here. (a) The charge dis-
tribution in the superconductor is macroscopically inhomo-
geneous, with excess negative charge near the surface and
excess positive charge in the interior. (b) Superfluid carri-
ers reside in overlapping mesoscopic orbits of radius 2A; .
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Fig. 1 Illustration of three key aspects of the physics of superconduc-
tors proposed here. (a) Superconductors expel negative charge from
their interior to the region near the surface; (b) Carriers reside in meso-
scopic overlapping orbits of radius 2A; (A;, = London penetration
depth); (c) A spin current flows near the surface of superconductors
(the arrow perpendicular to the orbit denotes the direction of the elec-
tron magnetic moment)

(c) A macroscopic spin current flows near the surface of su-
perconductors in the absence of applied external fields.
First, why does the Meissner effect imply an inhomoge-
neous charge distribution as depicted in Fig. 1(a)? Because
in order for a Meissner current to be ‘spontaneously’ gener-
ated near the surface of superconductors in the presence of a
magnetic field B (in the z direction), carriers have to move
radially outward, to be deflected by the magnetic Lorenz

force

- e, = e A N n N

F=-vxB=-Bw0 —vgr)=Fp0 + F,r @))
c c

in the azimuthal (é) direction. In the absence of radial mo-
tion (v, = 0), Fyp = eBv,/c = 0, there is no component of
the force in the azimuthal direction and the spontaneous gen-
eration of an azimuthal Meissner current cannot be under-
stood.

Second, why does the Meissner effect necessitate orbits
of radius 241 ? The Larmor diamagnetic susceptibility of n
electrons per unit volume in orbits of radius r for magnetic
field perpendicular to the orbits is

ne? 5

@)

XLarmor = — 51
4m,c?

and takes the value —1/4m, describing perfect diamag-
netism, for
2
 mne?’ ©)
from which we conclude that » = 24, with A; the London
penetration depth, defined by the standard equation [2]

2 MeC

1 4mne? 4
7 “
Instead, the Larmor diamagnetic susceptibility for orbits of
radius r = k;l, appropriate for the normal state, yields the
value —(1/3) M% g(er), the Landau diamagnetic susceptibil-
ity of electrons with density of states g(er) = 3n/2¢€F.

It is intuitively clear that orbit expansion and charge ex-
pulsion are intimately connected: the expanding orbit neces-
sitates that the charge moves outward. However, it is not ob-
vious what is the precise quantitative relation, since it will
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depend on the degree of overlap of the 2A; orbits. How is
this relation determined? It turns out that there are several
very different paths that lead to exactly the same conclu-
sion. This remarkable coincidence strongly suggests that the
result is valid to describe nature.

Let us first state the results. The electric field in the in-
terior of superconductors is caused by a uniform positive
charge distribution. For a long cylinder or a sphere, with ra-
dius R much larger than the London penetration depth, it is
given by

E(r) = Em% (5)

and is pointing radially outward. Within a London penetra-
tion depth of the surface the electric field is screened by the
excess negative charge near the surface and decays to zero at
the surface. The maximum electric field, attained for r ~ R,
is given by [14]

he

E,=-— 6
m 43)\’%‘ ( )

for A; =400 A, E,, = 308,281 V/cm. Carriers reside in
mesoscopic orbits of radius 2)7, and move with speed
h
W0 =
4me)\L
with opposite spin electrons moving in opposite directions.
Note that

e
V) =——ALEn. ®
mecC

@)

which implies that vg is also the charge velocity that would
be generated by a magnetic field of magnitude E,, (in cgs
units). The expelled charge density near the surface (p_) is
related to E,, by

E,=—-4mArp_ &)

so that the expelled charge density screens the interior elec-
tric field. It is also related to the spin current speed vg by

'UO
o_=eng—2. (10)
-

The orbital angular momentum of the carriers in the 21
orbits moving at speed vg is

_ 0 _h
L=maf Qi) = 3. (11

3 Microscopic Derivation

The spin—orbit interaction derived from Dirac’s Hamiltonian
for an electron of charge e and mass m, in an electric field
Eis

eh

Hyp = ———5—50 - (E x p). (12)

4m2c?
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We consider the single-particle Hamiltonian

1 2
- (S

H= (p——A,,) (13a)
2m, c

or, equivalently,

2 2

14 ¢ 7 = 2

H= — Ay - A 13b
2m,  mec * P 2myc2  ° (130)

with the spin—orbit vector potential KJ given by [15-18]
Ay = & x E.
meC

(13¢)

The term linear in A, in (13b) gives the spin—orbit interac-
tion equation (12). In obtaining (13b) from (13a), the fact
that V- (6 x E) = —& - (V x E) = 0 in an electrostatic sit-
uation is used. The significance of the term quadratic in A,
in (13b) will be discussed below.

We propose this Hamiltonian to describe the interaction
between the charged superfluid and the compensating ionic
background charge. If n; is the density of superfluid carriers
of charge e, the compensating ionic background has charge
density

pi = —en. (14)

The electric field generated by the charge density equa-
tion (14) in a cylindrical geometry at distance r from the
axis is (using (4))

. L omec?
E = 2rengr = — 57T (15)
2ery
The spin—orbit vector potential is then
A» hc (_, _,) E 8’ X I_’: (16)
= — O Xr)=
7 8ers )

with E,, given by (6). Thus, the superfluid carriers move in
a uniform effective magnetic field B, given by

5 B, x 7

Ay = , (172)
2

B, = E,G. (17b)

The radius of the cyclotron motion (‘magnetic length’)
associated with the magnetic field B, in the lowest Landau
level is

he \ 12
lp = =2\, 18
By <|e|Bg> L (18)

which, as discussed in Sect. 2, is the radius of the orbits
required to give rise to a Meissner effect. We believe this
coincidence is not accidental.

The Hamiltonian term that is quadratic in A, describes
the electrostatic energy cost resulting from the orbit expan-
sion and associated charge expulsion. From (13b), (16) and
(4) we obtain

e’ 5 1 E,% r?

Hpud = ——— A2 = —"m 19
Qad = o 27 T 8 (20,)? (19)

under the assumption |6 x 71| = 1, which we can write as

1 Ey(r)?
= — 20
quad n, 8 (20)
with
E
Es(r) = ﬁr. (1)

The electric field E;(r) can be understood as the average
electric field resulting from charge expulsion when the orbits
expanded to radius r, and the Hamiltonian term Hgyag is the
electrostatic energy density divided by the carrier density ng,
hence the electrostatic energy cost per carrier.

The existence of 21y orbits can be understood using a
semiclassical argument from the fact that they give rise to
minimum total energy, assuming that the angular momen-
tum is fixed at value //2 (see (11)), which originates in the
topological constraint that the pair wavefunction be single-
valued. The Hamiltonian equation (13b) is, upon replacing
E by the expression (15),

p? h r oo o

H=2me o, @ TP
e
——|o xn|".

8m, (2rp)*

For a circular orbit of radius r and angular momentum #/2,
p = h/2r and (22) yields

(22)

12 12
H = G XA)-p
2m,r? + 4m,(2r1)? (0 >n)-p
FLZ },.2 |4

———— |0 x 7 23
8w @t " @
Assuming ¢ is perpendicular to 7 and minimizing (23) with
respect to r yields

r=2AL. (24)

Thus, the fact that the orbits expand from a microscopic ra-
dius to radius 217 can be understood as driven by lowering
of kinetic energy (first term in (23)) at a cost in potential en-
ergy (last term in (23)) to yield minimal total energy. A sim-
ilar argument explains why the ground state radius of the
electron in a Bohr atom is ag = /i2/m.e>.

We assume that the single electron states are governed
by the Hamiltonian equation (22) for the value of r giving

minimum energy for the electron orbits, i.e. r = 24 . Hence
2 h h2 2
H=L MG hy.py 20
2m,  2m, 8m,

with go = 1/2Xx1. The eigenstates of (25) are plane waves,
with energy dispersion relation

(25)

[ S N
€ko = - qok - (0 x n) + . (26)
2m,  2m, 8m,
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Fig. 2 Rashba bands described by (28a)—(28b). The Fermi level de-
creases by v/2 = hzqg/Sme relative to the case where go = 0. The
states in band 1 with k < g9 = 1/2X, are unoccupied. The direction of
the spin o relative to the wavevector is shown schematically for band
1 and band 2, with the convention that the normal to the closest surface
points out of the paper

-
The speed of carriers of spin o and wavevector k is

- oo hk hgo
Vkie = 7 ok m.
so that the carrier’s speed increases or decreases by v?
(see (7)) depending on whether & x 7 is parallel or antipar-
allel to k. The dispersion relation equation (26) gives rise to
two Rashba bands

G xh Q27)

me, 2m,

(28a)

(28b)

The lowest energy band, e,l, corresponds to spin orienta-
tion parallel to k x . These bands are shown schematically
in Fig. 2.

4 Spin Current and Kinetic Energy Lowering

The motion of carriers with spin current velocity vg has as-
sociated with it a kinetic energy per carrier

€kin = Eme (vo') (29)
so it may seem that generation of a spin current as the system
goes superconducting entails an increase in kinetic energy.

Remarkably, it is exactly the opposite: the system lowers its
kinetic energy as it goes superconducting [19].
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One way to see this is as follows: consider a Cooper pair
of electrons with opposite spin and spin current velocity
:I:vg. When a magnetic field is applied, one of the electrons
slows down and the other speeds up by the change in veloc-
ity that they acquire, Av. The change in kinetic energy of
the pair is

e (- 807250

= me(Av)? (30)

so the kinetic energy increases. When one of the components
of the spin current stops, i.e. Av = vg, the system goes nor-
mal [12] and at that point the kinetic energy of the pair has
increased by AE = me(vg)z, from which we conclude that
the condensation energy per carrier is

1 0)2 - %

€c = Eme (UO'

or, in other words, the carriers lower their kinetic energy by
(1/2)m,(v2)?, rather than raise it by that amount, as they go
superconducting and develop the spin current.

The Rashba bands equation (28a)—(28b) describes pre-
cisely this physics in a two-dimensional system. The carrier
density is given by
BB

27 4w 4
where kr, kri, kpy are the Fermi wavevectors in the state
without and with spin current (cf. Fig. 2). Since from (28a)—
(28b) kpy = kp1 — qo, we have kp1 = kp + qo/2,kp2 =
kr — qo/2, with

kr = \[kp —q5/4 (33)

to satisfy (32). The Fermi energy is lowered from

€29}

8m,

(32)

h2k2.
€Er = (34)
2m,
to
h2k% v 35)
€ = =€ — —
F1,2 2me F 2
with
h2 2
p=_90 (36)
4m,

For a constant density of states (35) implies that each car-
rier lowers its kinetic energy by v/2 as the spin current de-
velops in the superconducting state, hence that the conden-
sation energy per electron is v/2, in agreement with (31).
This can also be seen directly from the spin orbit interaction
Hamiltonian equation (12), which gives rise to the spin orbit
interaction energy

eh >

h2q2
- -0 0
Es, = 20"(UO.XE):E:

© dmec

v (37)
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for carriers moving with speed v? given by (7), and the
electric field equation (15) evaluated at r = 2A; giving
E =m,.c?/|e|rr. The reason (37) is twice as large as (31) is
that it does not include the electrostatic energy cost Ee¢|

EelzlE_i:K (38)
ng 8w 2

arising from the electrostatic field that develops due to the
orbit expansion and associated charge expulsion. In other
words, electrons lower their kinetic energy by v but give
back half of that gain in the electrostatic energy cost associ-
ated with charge expulsion and spin current development.

In fact, the density of states associated with the energy
dispersion relations equation (28a)—(28b) is not constant as
would be the case in an ordinary two-dimensional system;
rather it is given by (per spin per unit area)

me K 39
g(@—m'ki%o' (39
so it is only approximately constant for k >> g/2. This im-
plies that when the Fermi level drops by v/2, the energy
lowering per particle is not exactly v/2. A direct calcula-
tion yields for the change in energy in the presence of spin
splitting

(40)

hZ 2 h2 4
AE:N[—ﬂ 4o }

8me  48mk3.

Note that the correction term is very small, a fraction
~107%. Nevertheless it has an interesting interpretation. The
energy of the electrons in the lower Rashba band in the range
k < go is found to be
hzqg

48m k3.
We have proposed in earlier work [20] that the expelled elec-
trons giving rise to the internal electric field are precisely
those in the lower Rashba band with k < g, giving rise to a
‘hole core’ of unoccupied states (holes) of long wavelength.
This is shown schematically in Fig. 2. Since the states are
unoccupied, their energy has to be subtracted from that given
by (40), canceling the second term in (40) and thus giv-
ing rise to energy lowering per electron of precisely v/2,
in agreement with (31).

The holes occupying the bottom of the lower Rashba
bands have a ‘Fermi surface’ at k = qo describing orbits of
real space radius 1/gg = 24 and the associated Fermi ve-
locity is precisely the spin current velocity equation (7).

In summary, we have seen in the last two sections that the
orbit expansion, Kinetic energy lowering, negative charge
expulsion and spin current development proposed to take
place as a metal undergoes a transition to the superconduct-
ing state within the theory of hole superconductivity, can all
be understood from the assumption that the magnetic mo-
ments of the electrons in the superfluid interact with the

(41)

Ecore =

(o]

& Vo
T T TR ED .
ot F o+ 4+ + A

v

(o}

Fig. 3 Schematic depiction of spin current near the surface of a cylin-
drical superconductor. Superfluid electrons within a London penetra-
tion depth of the surface flow counterclockwise (clockwise) if their
spin is pointing up (down), with speed v9 given by (7)

compensating positive charge of the ions through the spin
orbit interaction resulting from Dirac’s Hamiltonian.

5 Spin Electrodynamics

The physics described in the previous sections has a sim-
ple and consistent description in terms of electrodynamic
equations of the same type as London’s equations, without
any reference to a microscopic Hamiltonian. These equa-
tions were derived [11, 14] before their microscopic origin
was fully elucidated by requiring that the electrodynamic
equations be relativistically covariant, and the fact that their
predictions coincide with the physics resulting from the
microscopic Hamiltonian discussed in the previous section
strongly suggest that they describe reality. These equations
describe the flow of a spontaneous spin current within a sur-
face layer of thickness Ay, as shown schematically in Fig. 3.
In the charge sector, the electrodynamic equations fol-
low from the assumption that the second London equation is
valid in the form proposed by London:
C -

j:—
2
4w Ay

(42)

with the vector potential A obeying the Lorenz rather than
the London gauge as in the conventional theory. This is not
a statement that violates gauge invariance but a statement
about the physics of the system, which adopts a particularly
simple form in the gauges just described. Both descriptions
of the physics can be expressed in gauge invariant form, and
it is only experiment that can ultimately decide which one
describes nature.

The electrodynamics in the charge sector is described by
the four-dimensional vector equation [11]

J—Jo=—ﬁ(A—Ao) 43)
with

J=(],icp), (442)
A=(A,ig), (44b)
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where p is the charge density, and ¢ the electric potential,
and

Jo=1(0,icpp),
Ap = (0,i¢o).

Here ¢y is the electric potential originating in the uniform
charge distribution pg that gives rise to the electric field E,,
(see (6)) near the surface.

Including spin, the equations are, in a cylindrical geom-
etry with the spin quantization axis parallel to the cylinder
axis [14]

(45a)
(45b)

C
2
8wt

with the four-vectors defined as in (44a)—(44b), with

Jo —Jo0=— (Ao — As0) (46)

Ay =A+1r.5 xE, (472)
¢s =¢ — 115 - B, (47b)
and J = Jy +Jy, p=p1 + py, po0 = ¢o and

Ago=AL0 X E'(), (48)

where EO(F) is the electric field generated by the uniform
charge density po in the interior, that has magnitude E,, near
the surface. Equation (47b) follows from (47a) by requir-
ing that the four-divergence of A, vanishes and using the
Lorenz gauge condition.

Note that the electric part of the vector potential Ag is of
the same form as (13c), with the replacement

rqg = 2”}116 — 2A,L, (49)
rq being the ‘quantum electron radius’ [13]. The transition
to superconductivity can be understood as an expansion of
the electronic wavefunction from the quantum electron ra-
dius scale r to the 2A scale, keeping the angular momen-
tum fixed at //2, driven by kinetic energy lowering [19]. The
electric field in (13c) is the bare electric field arising from
the charge density |e|ng|, while the electric field in (47a) is
the net electric field resulting from charge expulsion, which
is much smaller. Their ratio is r4 /2A = vg/c ~107°,

In the absence of applied magnetic field, (43) yields for
the spin current

- c - -
Jo =— X (E — Ep).

o 87AL o x( 0)
In terms of the superfluid density ng and the spin current

velocity v, , we have

(50a)

=4 €ng

Jo- = 71)0-.

(50b)

The electric field E approaches Eo in the interior of the
superconductor (at distances larger than A; from the sur-
face) and hence the spin current decays to zero in the inte-
rior. Near the surface E approaches zero as the interior field
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Eo is screened by the expelled charge density p_. At the
surface £ =0, |Eg| = E;; (see (6) and (49)) yields for the
spin current velocity, using (4):

. h

- _ 5 X N 51
Vo 4meALo><n (&2))

with the normal unit vector i pointing outward. This agrees
with the spin current velocity equation (27) derived from the
microscopic Hamiltonian equation (13a)—(13c).

6 Discussion

The theory discussed here offers a new conception of the
phenomenon of superconductivity, which naturally ties to-
gether many well-known aspects of the physics of supercon-
ductors in a very different and more fundamental way than
the conventional theory does.

Superconductivity in this theory results from the expan-
sion of the electronic wavefunctions, driven by kinetic en-
ergy lowering. This tendency of quantum particles to ex-
pand their spatial range (generally ascribed to the uncer-
tainty principle) can be easily understood semiclassically:
an orbiting particle with fixed angular momentum lowers its
kinetic energy as the radius of the orbit increases. The need
for macroscopic phase coherence follows naturally from the
fact that the expanded orbits overlap and thus require phase
coherence to avoid collisions that would increase the po-
tential energy. The process of nucleation of the supercon-
ducting state in a normal metal matrix naturally leads to the
observed physics within our conception: as the orbits ex-
pand and the superconducting kernels expand their size, the
magnetic field is pushed out of the superconducting regions
because of the azimuthal currents induced by the Lorenz
force acting on the radially outflowing charge. The charge
expulsion (which occurs whether or not a magnetic field is
present) naturally leads to the macroscopically inhomoge-
neous charge distribution depicted in Fig. 1(a), as the ex-
pelled charge has nowhere to go but the surface if the entire
sample becomes superconducting, in the process carrying
the expelled magnetic field lines with it. Alternatively, some
charge will flow into interior normal regions that trap mag-
netic field lines, as in the intermediate state of type I super-
conductors or the mixed (vortex) state of type II supercon-
ductors. Charge asymmetry (the sign of the charge expelled
is always negative) is essential to this theory.

The fact that negative charge flows out in the transition to
superconductivity has not yet been directly verified experi-
mentally. However I suggest that the phenomenon is clearly
illustrated in the current flow through a superconducting
wire connected to normal metal leads shown in Fig. 4. In-
deed, as the conduction electrons enter the superconducting
region they will flow towards the surface as shown by the
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Fig. 4 The current distribution in a superconducting wire which is fed
by normal conducting leads. The flow lines are calculated in Ref. [21].
Note that as electrons enter the superconducting region, their velocity
acquires a radial component and charge moves towards the surfaces. In
the process they carry with them the magnetic field lines (not shown)
which exist throughout the interior in the normal leads (circles perpen-
dicular to the plane of the page, with normal in the direction of current
flow) and only near the surface (and of course outside the wire) in the
superconductor region

flow lines in Fig. 4, since current only flows near the surface
in superconductors. There is only a small leap to the con-
clusion that charge flows to the surface when a metal goes
superconducting even in the absence of current flow [4].

The reader may argue that the sign of the charge moving
towards the surface is ambiguous in the situation depicted in
Fig. 4, since it depends on the sign of the charge of the cur-
rent carriers (whether electrons or holes). Fortunately there
is no ambiguity: experiments on rotating superconductors
demonstrate that the current in superconductors is always
carried by negative electrons [6, 22-25].

Our proposal that superconductors expel negative charge
from their interior to the surface was motivated by the the-
ory of hole superconductivity [26], and only later did we
realize that it also provides an explanation of the Meissner
effect [13, 27-30]. It should be pointed out however that pri-
ority for this idea (unbeknownst to this author when Refs.
[13, 27-30] were written) belongs to K.M. Koch [31-33],
as clearly spelled out in Ref. [34]: “Nimmt man ndamlich an,
dass der Ubergang N — S in irgendeiner Weise mit einer
Elektronenbewegung vom Innern des Versuchskorpers nach
seiner Oberflache hin verbunden ist — und wir werden sofort
sehen, dass zur Verwirklichung einer solchen sogar mehrere
Moglichkeiten bestehen — so sieht man ein, dass auf diese
Weise ein Abschirmstrom bei konstantem Magnetfeld zus-
tande kommen kann.”!

The superconducting state envisioned in our theory is
‘dynamic,” as it involves motion of electrons in mesoscopic
orbits (Fig. 1b) and gives rise to a macroscopic spin current
near the surface (Fig. 1c). Thus it is closer to the state of
“kinetic equilibrium” envisioned by London? than the con-

ITranslation of quote from Ref. [34]: “Assuming that the transition
N — S is in some way connected with a motion of electrons from the
interior of the body to its surface—and we will immediately see that
there exist even several possibilities to realize this—it can be seen that
in that way a screening current under a constant magnetic field can be
generated.”

2See Ref. [21], Introduction.

ventional BCS state. The pre-existent spin currents are read-
ily transformed into charge currents when a magnetic field
is applied, analogous to the way the “virtual precession” of
the electronic angular momentum in an atom is transformed
into real precession when a magnetic field is applied [35].
This ‘dynamic’ ground state is a truly macroscopic quantum
state exhibiting quantum zero point motion at the macro-
scopic level, and it bears a qualitative resemblance to early
descriptions of the superconducting state by Bloch, Landau,
Frenkel, Smith, Born, Cheng, Heisenberg and Koppe that
envisioned domains of charge currents pre-existing in the
superconductor in the absence of applied magnetic fields
[36-45]. Furthermore, Frenkel [38], Smith [39, 40] and
Slater [46] pointed out that electronic orbits of radius of or-
der Az, would naturally explain the Meissner effect (this was
also unbeknownst to this author when we proposed the ex-
istence of 21y, orbits [12]).

In his book ‘Superfluids’ [21], London coined the term
“Meissner pressure.” By that term he described the tendency
of the superconductor to push out the magnetic field lines,
against the “Maxwell pressure” that tries to keep them in-
side. There is no intuitive physical explanation of “Meissner
pressure” within the conventional London—-BCS theory of
superconductivity, however, other than the abstract concept
that it originates in the difference in the free energy densi-
ties of the normal and superconducting states [21]. Thus, the
very descriptive concept of “Meissner pressure” articulated
by London remained just an appealing physical image with
no deeper content. Instead, for us “Meissner pressure” has a
concrete physical meaning: it is nothing other than the ubig-
uitous quantum pressure [47], the tendency of quantum par-
ticles to expand their spatial range to lower their kinetic en-
ergy, which has as a consequence the outward motion of any
interior magnetic field lines as well as the outward motion
of negative charge. The ‘proximity effect,” whereby the su-
perconducting state expands into neighboring normal metal
regions, is another vivid manifestation of this physics, as is
the prediction that some negative charge ‘seeps out’ of the
surface of superconductors [4, 27].

The tendency of a normal metal to expel negative charge
from the interior to the surface and become superconduct-
ing will be largest when electronic energy bands have a lot
of electrons (almost full bands, resulting in hole-like carri-
ers) and when the conducting structures have excess nega-
tive charge (conduction through a network of closely spaced
anions). The relevance of these concepts to the understand-
ing of superconductivity in various classes of materials is
discussed in Ref. [48].
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