ACCEPTED MANUSCRIPT

On the room temperature superconductivity of carbonaceous sulfur hydride

To cite this article before publication: Jorge E. Hirsch 2022 EPL in press https://doi.org/10.1209/0295-5075/ac50c9

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2022 EPLA.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.
On the room temperature superconductivity of carbonaceous sulfur hydride

J. E. Hirsch

Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319

Room temperature superconductivity has been reported for a carbonaceous sulfur hydride (CSH) under high pressure by Snider et al [1]. The paper reported sharp drops in ac magnetic susceptibility as a function of temperature for six different pressures, that were interpreted as signaling superconducting transitions. Recently, two of the authors of ref. [1] posted in ref. [2] the underlying data for the ac magnetic susceptibility of CSH reported in ref. [1]. Here I provide an analysis of these underlying data. The results of this analysis call into question the generally accepted view that carbonaceous sulfur hydride is a room temperature superconductor.

I. INTRODUCTION

On October 14, 2020, Snider et al reported the discovery of the first room temperature superconductor, carbonaceous sulfur hydride, hereafter called CSH [1]. If this is true, it represents a major scientific breakthrough. Many researchers throughout the world have been devoting intensive research efforts and resources to this topic for the last 14 months under the assumption that the result is correct. To date the result has not been independently reproduced. In this paper we show that ac magnetic susceptibility results reported in [1] are not supported by valid underlying data. This calls the conclusion of ref. [1] that the material is a superconductor into question.

The findings of sharp drops in the measured ac magnetic susceptibility as a function of temperature was claimed in ref. [1] to be “a superior test of superconductivity”, demonstrating the existence of superconducting transitions. The susceptibility data reported in [1] were obtained from the subtraction of two independent measurements, namely “raw data” and “background signal”, according to the equation

\[\text{data} = \text{raw data} - \text{background signal}. \]

According to the caption of Fig. 2a of [1], “The back-

![FIG. 2: Raw data (“Measured voltage”) for ac susceptibility data versus temperature for the six pressure values reported in ref. [1]. The numerical values were taken from the tables for “Measured voltage” given in ref. [2]. The ordinate gives the value of the voltage in nV.]

ground signal, determined from a non-superconducting C-S-H sample at 108 GPa, has been subtracted from the data.” However, neither of these independent measurements (raw data and background signal) were given in the paper [1] nor in supplemental material for the six pressures for which results were published.

More than a year later, in a paper posted on arXiv in December 2021 [2], two of the authors of ref. [1] reported the measured raw data and the numerical values of the data for the six curves of susceptibility data published in ref. [1]. Here we analyze this information and its relationship with the published data in ref. [1]. We find that there is an unexpected disconnect between the raw data and the data published in ref. [1]. Some partial results were reported earlier in refs. [3, 4].

Figure 1 shows the susceptibility data for the six pressure values for which susceptibility data were given in ref. [1], termed “Superconducting Signal” in ref. [1]. Figure 2 shows the raw data for the six pressure values, termed “Voltage measured” in ref. [2]. The sharp drops in the curves as the temperature is lowered are interpreted to signal superconducting transitions [1, 2].

It should be pointed out that the top left panel of Fig. 1, for 138 GPa, was reported in ref. [1] erroneously as “raw data”, however it is reported as “Superconducting Signal”, i.e. “data”, in refs. [2]. It is notable that the results for 138 GPa are qualitatively different from all

![FIG. 1: Ac susceptibility data (“Superconducting Signal”) versus temperature for the six pressure values reported in ref. [1]. The numerical values were taken from the tables for “Superconducting Signal” given in ref. [2]. The ordinate gives the value of the signal in nV.]
FIG. 3: Background signal for ac susceptibility data versus temperature for the six pressure values reported in ref. [1], obtained from Eq. (1), using the numerical values for raw data (“Measured voltage”) and data (“Superconducting signal”) given in ref. [2]. The ordinate gives the value of the voltages in nV.

the other cases: for temperatures below the drop, the susceptibility rises sharply, while it is flat in all the other cases. No explanation is given in refs. [2] for this fact, nor for why the results for 138 GPa were reported in ref. [1] as “raw data” when in fact they are “data” obtained after subtracting a background signal from the measured raw data, nor for why that particularly anomalous curve was chosen to be shown in the inset of Extended Data Fig. 7d of ref. [1].

II. THE BACKGROUND SIGNAL

According to Eq. (1) and ref. [1], the data (“Superconducting Signal”) are obtained from the raw data (“Voltage measured”) by subtracting an independently measured background signal at a lower pressure, namely 108 GPa according to ref. [1], for which no superconductivity is expected. The numerical values of this background signal have not been reported by the authors. However, we can obtain them from Eq. (1) as

\[\text{background signal} = \text{raw data} - \text{data}. \]

Figure 3 shows the resulting background signal in the different temperature ranges. The vertical scale in each case was chosen so that the curve fits in the graph. In order to compare the slopes of the different parts, we replotted the curves in Fig. 4 using the same voltage interval in the vertical scale for all panels, namely 68 nV. It can be seen that there are large differences in the magnitude of the slopes, and that two curves have negative slopes and four have positive slopes.

Since the background is presumably a single background signal measured at 108 GPa for the entire temperature range, we would like to replot it as a single curve over the entire temperature range. However, the data for susceptibility reported in ref. [1] were shifted vertically so that they have values close to zero above the sharp jumps, as seen in Fig. 1. As a consequence, in obtaining the background signal from Eq. (2) there is an unknown vertical shift. To plot all the panels of Fig. 4 on the same graph, we shifted the portions vertically to obtain the best possible smooth curve. The result is shown in Fig. 5.

As can be seen in Fig. 5, it is impossible that the background signal resulted from a single measurement, because the temperature ranges given in the panels of Fig. 4 for 160 GPa and 166 GPa overlap, and the background signal curve has opposite slope in both panels. In addition, it can be seen that there are large changes in the slope in the region between 180K and 200K, also indicating that the different portions of the curve were not obtained in a single measurement versus temperature.

We conclude that with the information given in refs. [1] and [2] a reader cannot understand how the background signal was obtained, in other words what was measured and subtracted from the “Measured voltage” to obtain the “Superconducting Signal” reported in these references.
III. FINE STRUCTURE OF THE BACKGROUND SIGNAL

We had already reported in refs. [3, 4] that the fine structure in the inferred background signal for three pressure values was very similar to the fine structure in the raw data. We find that this is also the case for the additional data reported in ref. [2]. We show the comparison for all the pressure values in Fig. 6. In contrast to refs. [3, 4] we use here the numerical values for data reported in ref. [2], while in refs. [3, 4] we used the values obtained from analysis of the published vector graphic images since the numerical values had not been yet reported by the authors.

For the case of 138 GPa we only show one background signal curve because unlike the other cases the slope changes substantially below the jump. This is also the only case for which a background signal is also provided in ref. [2]. The background signal shown there closely matches the background signal shown in Fig. 6 upper left panel that we obtained from Eq. (2).

IV. COMPARISON OF SUSCEPTIBILITY INCREMENTS IN RAW DATA AND IN DATA

To attempt to understand the relationship between the reported data (“Superconducting Signal”) and raw data (“Voltage measured”) we considered the susceptibility increments

\[\Delta \chi_i \equiv \chi_i - \chi_{i-1} \]

where \(\chi_i \) is either the data or the raw data for point \(i \). In the tables given in ref. [2] the data and raw data are all given for the same list of temperature values, which facilitates comparison. Fig. 7 shows comparison of the susceptibility increments for raw data and data for the six pressure values.

Recall that the data are supposedly obtained from the raw data through Eq. (1). An independently measured background signal is subtracted from the raw data to arrive at the published data, denoted by “Superconducting Signal” in the tables of ref. [2]. However, Fig. 7 is impossible to understand in light of Eq. (1). In particular, for 160 GPa, 166 GPa, 178 GPa and 189 GPa the range of values of \(\Delta \chi \) for the raw data is much larger than the range of values of \(\Delta \chi \) for the data. According to Eq. (1) we would expect exactly the opposite: given a range of values for \(\Delta \chi \) for the raw data and another one for the independently measured background signal, the resulting range of values of \(\Delta \chi \) for the difference, i.e. the data, should be larger than for both. Instead, it is substantially smaller.
V. DATA FOR 160 GPa

The discrepancy between what we expect to see and what we see is particularly glaring for 160 GPa.

For that case, the $\Delta \chi$ increments for the data in Fig. 7 follow well defined lines with no scatter at all. It is impossible to understand how this behavior can result from a physical measurement of a voltage and subtraction of a physical measurement of another voltage at a different pressure. In Fig. 8 we show on the left panel the susceptibility increments for the raw data (black points) and for the background signal obtained through Eq. (2) (red points). The difference between these two sets of points obtained through alleged separate measurements at different pressures, gives rise to the data points shown on the right panel of Fig. 8.

Finally, to highlight the highly anomalous features of the data for 160 GPa we show in Fig. 9 the data and raw data for a limited range of temperatures that encompasses 112 points. The data show a complete disconnect with the raw data, and they follow a highly regular pattern. It is impossible to understand how such a regular pattern could result from a physical measurement versus temperature, or from a combination of physical measurements versus temperature.
VI. CONCLUSION

In this paper we have analyzed the underlying data for the ac susceptibility results reported in ref. [1] in support of the claim that carbonaceous sulfur hydride is a room temperature superconductor. These underlying data were supplied by two of the authors of ref. [1] in Tables 1 to 10 of ref. [2]. To reiterate the nomenclature, in this paper we called “raw data” and “data” what ref. [2] calls “Measured voltage” and “Superconducting Signal” respectively. We have assumed that the “data” are related to the “raw data” through Eq. (1), i.e. subtraction of a “background signal” measured at a lower pressure, as reported by the authors of [1] in the figure caption of Fig. 2a. This is general practice in the field, the background signal is usually obtained for a pressure where no superconductivity is expected in the temperature range of interest [5]. Ref. [1] informs that the background signal was obtained through measurements at pressure 108 GPa. The authors did not report the numerical values of the background signal in either of the references [1, 2] nor in private communications to this author, so assuming the validity of Eq. (1) we obtained those numerical values using Eq. (2) and the numerical values for the two terms on the right side of Eq. (2) reported by the authors in ref. [2]. The numerical values for the background signal that we obtained from Eq. (2) for 138 GPa appear to be identical to the background signal curve for that case shown in the upper panel of Fig. 7 of ref. [2], the only case for which a background signal is given in refs. [1, 2].

Our analysis has revealed several features of the reported data that appear to contradict what is stated in the papers [1, 2]. These features are:

(1) The background signal that we obtained through Eq. (2) shows anomalous temperature dependence and is double-valued in some temperature range, as shown in Fig. 5.

(2) The fine structure of the background signal obtained through Eq. (2) closely tracks the fine structure of the raw data for all the pressure values as shown in Fig. 6. This fine structure is presumably due to random noise and should not reproduce in independent measurements at different pressures. In refs. [3, 4] we showed several examples of measurements in other materials, where the fine structure at any two different pressures is completely different.

(3) The difference in the values of the data for neighboring temperatures Δν shows substantially more scatter in the raw data than in the data, as shown in Fig. 7. The opposite should be the case for data obtained from subtracting from the raw data an independently measured background signal. For pressure value 160 GPa inexplicably the data show no scatter at all, as shown in Fig. 8.

(4) The highly regular data for 160 GPa given in Table 5 of ref. [2], shown for a limited temperature interval in Fig. 9, could not have resulted from a physical measurement nor from a combination of physical measurements.

These results imply that the susceptibility data reported in ref. [1] are not supported by valid underlying data. It is impossible to understand how the reported data values are related to the reported measured data. This calls their validity into question. These data were a substantial part of the evidence presented in ref. [1] in favor of the claim that CSH is a room temperature superconductor. As a consequence, the results of this paper call that claim into question. Other reasons to question that claim were reported in refs. [6, 7] and [8].

In addition, we do not have an explanation of the features (1), (2), (3) (4) listed above that would be consistent with standard scientific practice. We believe there is none.