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In a process where the temperature of a type I superconductor in a magnetic field changes, the
conventional theory of superconductivity predicts that Joule heat is generated and that the final
state is independent of the speed of the process. I show that these two predictions cannot be
simultaneously reconciled with the laws of thermodynamics. I propose a resolution of this paradox.

PACS numbers:

I. INTRODUCTION

Within the conventional London-BCS theory of super-
conductivity [1], the state of a simply connected super-
conductor in an external magnetic field is independent
of how the system reached that state. The theory also
predicts that when an electric field exists in a supercon-
ductor at finite temperature, Joule heat is always gener-
ated. Here I point out that for a type I superconductor in
the presence of a magnetic field, those two assumptions
lead to a contradiction with the laws of thermodynam-
ics in a process where the temperature is changed below
Tc. Consequently, one of the two assumptions must be
incorrect in that situation. I propose it is the second one,
and that the alternative theory of hole superconductivity
offers a possible resolution of this paradox.

II. THE PROCESS

Figure 1 shows the phase diagram of a type I supercon-
ductor in a magnetic field H [1]. We consider the process
where a cylindrical superconductor is cooled from state 1
to state 2 shown in Fig. 1, in the presence of an applied
field H0. The inconsistency also arises if we consider
heating instead. The magnetic field of a long cylinder of
radius R and London penetration depth λL in a magnetic
field H0 parallel to its axis is [2]

~B(r) = H0
J0(ir/λL)

J0(iR/λL)
ẑ (1)

where J0 is the Bessel function of order 0 and ẑ is along
the cylinder axis. To lowest order in λL/R,

~B(r) = H0e
(r−R)/λL ẑ. (2)

The London penetration depth is a decreasing function of
temperature, hence a decreasing function of time in the
process of cooling. In the process shown in Fig. 1, the
London penetration depth changes from λ1 to λ2 < λ1
when the temperature is lowered from T1 to T2. Figure 2
shows the superconductor as seen from the top, with the
dots indicating magnetic field pointing out of the paper.
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FIG. 1: Critical magnetic field versus temperature for a
type I superconductor. We will consider the process where a
system evolves from point 1 to point 2 along the direction of
the arrow.
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FIG. 2: Cylindrical superconductor seen from the top. The
right (left) panel indicates the system in the state 1 (2) of
Fig. 1. The dots indicate magnetic field H0 coming out of
the paper. The same current I flows in both states. The
Faraday electric field EF generated during the process points
counterclockwise.

III. FARADAY ELECTRIC FIELD

The magnetic field near the surface is changing in this
process, therefore a Faraday electric field is generated.
We assume cylindrical symmetry throughout the process.
The electric field at radius r at time t is determined by
the equation∮

~E(r, t) · ~d` = −1

c

∂

∂t

∫
r′<r

~B(r′, t) · ~dS (3)
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which yields

~E(r, t) = −H0

c
(1 +

R− r
λL

)e(r−R)/λL(t) ∂λL
∂t

θ̂. (4)

The electric field points counterclockwise.
At any given temperature there are both superfluid

and normal electrons, of density ns and nn, with ns +
nn = n constant in time, in a two-fluid description [1].
Similarly within BCS theory there is the superfluid and
Bogoliubov quasiparticles at finite temperature, we will
call the latter ‘normal electrons’ [1]. The Faraday electric
field will impart momentum to these normal electrons
during the process, and this momentum will decay to zero
through scattering with impurities or phonons [1]. These
are irreversible processes, that generate Joule heat and
entropy [3]. The normal current induced by the Faraday
electric field is

jn(r, t) = σn(t)E(r, t) (5)

with [1]

σn(t) =
nn(t)e2τ

m∗
(6)

within a Drude description with relaxation time τ , with
m∗ the transport effective mass. The energy dissipated
per unit time per unit volume is

∂w(r, t)

∂t
= σn(t)E(r, t)2, (7)

and the energy per unit time dissipated over the entire
volume is

∂W (t)

∂t
=

∫
d3r

∂w(r, t)

∂t
. (8)

If the process extends from time t = 0 to t = t0 the total
Joule heat dissipated is

QJ =

∫ t0

0

∂W (t)

∂t
dt (9)

and the Joule entropy generated during this process is

SJ =

∫ t0

0

∂W

∂t

1

T (t)
dt (10)

where T (t) is the temperature at time t. We assume the
process is sufficiently slow that T (t) is well defined at all
times.

Note that QJ and SJ depend on the speed of the pro-
cess. If we assume for simplicity that ∂λL/∂t is constant,
we have∫ t0

0

(
∂λL
∂t

)2F (λL(t))dt =
∂λL
∂t

∫ λ2

λ1

F (λL)dλL (11)

for any F , so QJ and SJ are directly proportional to
∂λL/∂t . In addition, QJ and SJ are proportional to the
Drude relaxation time τ , or equivalently to the normal
state conductivity.
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FIG. 3: The system (superconductor in a magnetic field) at
initial temperature T1 is connected to a heat reservoir at tem-
perature T2 < T1 through a wall of thermal conductivity κ.
The entire assembly is thermally and mechanically insulated
from its environment.

IV. THERMODYNAMICS

We consider the situation shown in Fig. 3. The system
is our superconductor with phase diagram given in figure
1, with applied magnetic field H0. The system is initially
in thermal equilibrium at temperature T1, with London
penetration depth λ1 = λL(T1).

We put it in thermal contact with a heat reservoir at
temperature T2 < T1 through a wall with thermal con-
ductivity κ. Heat will flow and eventually the system will
reach temperature T2 and be in thermal equilibrium with
the heat reservoir. We assume the entire assembly is ther-
mally and mechanically insulated from its environment.
The magnetic field originates in external permanent mag-
nets, no work is performed on those magnets during the
process. We also assume the process is sufficiently slow
that no electromagnetic radiation is generated. Under
these conditions, the initial and final states of BOTH the
system AND the reservoir are uniquely determined.

Given the initial and final states, we can compute var-
ious thermodynamic quantities. The total heat Q trans-
ferred from the system to the reservoir during the process
is

Q =

∫ T1

T2

dTC(T ) (12)

where C(T ) is the equilibrium heat capacity of our sys-
tem. The change in entropy of the system in this process
is

∆S = S(T2)− S(T1) =

∫ T2

T1

dT
C(T )

T
(13)

and is of course negative since T2 < T1. The change in
entropy of the universe in this process is

∆Suniv =
Q

T2
+ ∆S (14)

and is of course positive since we are dealing with an
irreversible process, heat conduction between systems at
different temperatures. The quantities Q and ∆Suniv
depend only on the initial and final states of the process,
not on the speed at which the process happens.
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The Joule heatQJ and associated entropy SJ discussed
in the previous section depend on the speed of the pro-
cess, which will depend principally on the thermal con-
ductivity of the heat conductor, κ, connecting the system
and the heat reservoir. It would appear that the exis-
tence of Joule heat violates both the first and second law
of thermodynamics.

In the next section we will show that even if it may be
possible to ‘save’ the first law by some contrived assump-
tion, the second law is necessarily violated.

V. THE INCONSISTENCY

Let us consider a small step in the process, starting
with the system at temperature T , where the system sup-
plies heat ∆Q to the reservoir which is at temperature
T2 < T − ∆T . The system will change its temperature
from T to T −∆T . Assume we connect and disconnect
the thermal connection between system and reservoir at
the beginning and the end of this step, and wait at the
end until equilibrium has been attained. Consider two
different ways to do this step:

(a) Infinitely slowly
(b) In a finite amount of time, ∆t.

According to the previous discussion, for (b) finite Joule
heat will be generated in the system during this process.

First, let’s realize that the change in temperature of
the system, ∆T , has to be the same for (a) and (b).
The reason is, the energy transferred to the reservoir was
∆Q for both (a) and (b), and the final state and hence
final temperature of the system is uniquely determined
by its energy, which is the same for (a) and (b), namely
(initial energy -∆Q). Note also that the energy in the
electromagnetic field is also the same in the final state
of processes (a) and (b). We discuss the electromagnetic
field in detail elsewhere [4], it is not necessary to include
it for this argument. The final state of the reservoir is
also unique, depending only on the amount of heat ∆Q
supplied to it, and independent of the speed at which
that heat was supplied to it.

For process (a), we have

∆Q = C(T )∆T (15)

where C(T ) is the equilibrium heat capacity of the sys-
tem. For process (b), assume Joule heat ∆QJ is gener-
ated. One could imagine that the heat capacity of the
system is different than the equilibrium one when the
process occurs at a finite rate and involves Joule heat,
let’s call it Cr(T ) < C(T ). We will then have for process
(b)

∆Q = Cr(T )∆T + ∆QJ (16)

transferred from the system to the reservoir, the same
as in process (a). So under this assumption the first law
of thermodynamics is not violated, energy is conserved.
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FIG. 4: Heating: the reservoir is at temperature T1, the
system is at temperature T < T1. An amount of heat ∆Q
flows from the reservoir to the system in a time t0 that is
inversely proportional to κ and to (T1 − T ).

However, let’s consider the change in entropy of the uni-
verse. In process (a) it is

∆S
(a)
univ =

∆Q

T2
− ∆Q

T
+O((∆T )2). (17)

In process (b), Joule heat ∆QJ is generated. Quantita-
tively, we obtain from Eqs. (4), (7) and (8)

∂W

∂t
= σn(

∂λL
∂t

)2
H2

0

c2
πhRλL(t)

2
(18)

and ∆QJ =
∫

(∂W/∂t)dt is given by

∆QJ = ∆T
κA

C(T )

T − T2
d

λL(T )

2R
σn(

∂λL
∂T

)2
H2

0

c2
V (19)

where we used that

∂T

∂t
=

κA

C(T )

T − T2
d

. (20)

V = πR2h is the volume of the cylinder, d the thickness
of the wall connecting the reservoir and system and A its
area, and σn is given by Eq. (6) with nn(T ).

Therefore, in process (b) entropy increases for two rea-
sons. First, generation of Joule heat generates entropy:

∆SJ =
∆QJ
T

+O((∆T )2). (21)

Note that ∆QJ and hence ∆SJ is O(∆T ) and not
O((∆T )2). Second, the transfer of the heat ∆Q from
the system to the reservoir generates the same entropy
as given by eq. (17), which is also O(∆T ). Therefore,
the change in entropy of the universe in process (b) is

∆S
(b)
univ = ∆S

(a)
univ + ∆SJ > ∆S

(a)
univ. (22)

However, entropy is a function of state. Therefore, the
second law of thermodynamics is violated by Eq. (22).

We can also consider the reverse process, heating the
superconductor below Tc, as shown in Fig. 4, where the
inconsistency may be even clearer. With the system at
temperature T < T1, with T1 the temperature of the
reservoir, an amount of heat ∆Q will flow from the reser-
voir to the system and raise the temperature of the sys-
tem by ∆T = ∆Q/C(T ). The change in entropy of the
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universe in this process if it occurs infinitely slowly (i.e.
if κ→ 0) is

∆Suniv = −∆Q

T1
+

∆Q

T
+O((∆T )2). (23)

The time the process actually takes for finite κ is finite,
inversely proportional to κ and to T1 − T . The Joule
heat generated ∆QJ is given by Eq. (19) with (T1 − T )
replacing (T − T2). We have to assume that through an
unspecified process, which itself may violate the second
law, a part of the absorbed ∆Q, in an amount that de-
pends on κ, is used up in providing the work that propels
the normal current, that decays by generation of ∆QJ .
In any event, Joule entropy

∆Sextra =
∆QJ
T

+O((∆T )2) (24)

will be generated by the decay of the normal current that
is added to the entropy Eq. (23), violating the second
law.

VI. IS THERE A POSSIBLE RESOLUTION
WITHIN THE CONVENTIONAL THEORY?

It has been suggested that one crucial flaw (1) in my ar-
gument may be the implicit assumption that the sample
at intermediate times can be characterized by a uniform
temperature T [5]. Another flaw (2) may be that even
assigning a well-defined temperature to the region where
normal current is flowing may not be possible [5]. An-
other possible flaw (3) may be that the relaxation time
may be a function of momentum in the superconducting
state rendering Eq. (5) invalid [6], and another flaw (4)
may be that assuming that the only dissipative mecha-
nism in the problem is the Joule heating may render my
conclusion invalid [6]. In the following I address those
suggestions.

Regarding (3) and (4), I argue that even if those sug-
gestions are valid they would not invalidate my argument.
If there is another dissipative mechanism in the problem
besides Joule heating (and in fact I believe there is within
the conventional theory [7]) it would only make the in-
consistency worse, since all I need is that there is some
dissipation for the inconsistency to arise. Regarding Eq.
(5), even if it needs to be replaced by a more complicated
expression that would take into account a relaxation time
that is a function of momentum and/or a non-local gener-
alization of Ohm’s law, it would not change the fact that
it gives rise to dissipation. Furthermore, as discussed by
Tinkham [1], Sect. 2.5, a two-fluid approximation with
a normal conductivity given by Eq. (5) “is the stan-
dard working approximation for understanding electrical
losses in superconductors” in situations with ac currents
or applied electromagnetic fields, and there is no reason
to expect within the conventional theory that the same
would not apply to the situation considered here.

The most serious objection may be (1), that the sam-
ple may not be at a uniform temperature. Let us ex-
amine that suggestion. First, I would argue that the
speed at which temperature equilibrates depends on an-
other variable not included in the argument, namely the
thermal conductivity of the sample, that is at our dis-
posal. We may simply assume we have a sample with
sufficiently high thermal conductivity that it homoge-
nizes the temperature on a timescale much shorter than
all other timescales in the problem.

Still, let us assume that for some unknown reason this
does not happen. Considering the heating process of Fig.
4, let us assume the surface layer heats up and becomes
hotter than the bulk, and becomes a ‘subsystem’ at tem-
perature Th = T + δT . One might argue that part of
the incoming heat ∆Q provides energy to drive the Joule
current in this subsystem at temperature Th, and the re-
sulting Joule heat is dumped into the bulk at the lower
temperature T as in a ‘heat engine’, thus not violating
the second law. The heat coming into the subsystem at
temperature Th would raise its entropy less than if its
temperature was T , and this difference may account for
the extra Joule entropy generated.

To counter this argument, we may simply assume that
the sample is not heated from the surface but from the
interior. Assume the sample is a hollow cylinder, with
no magnetic field in the interior nor in the hollow cav-
ity, so that supercurrent only flows near the outer sur-
face as before. The heat ∆Q is added through the inner
surface, so there is no mechanism for the outer surface
layer to heat up beyond the bulk before generating Joule
heat. As the heat ∆Q is coming in, the London pene-
tration depth will increase, with a corresponding change
in magnetic flux and associated Faraday field generated,
and the generated Joule heat ∆QJ will generate Joule
entropy ∆QJ/T thus violating the second law.

Finally, regarding the suggestion that assigning a well-
defined temperature to the region where normal current
is flowing may not be possible, I would simply say that
even if so it does not eliminate the inconsistency. Par-
ticularly in the scenario described in the preceding para-
graph. Furthermore one has to keep in mind that the
thickness of the region where the current flows could even
be a significant fraction of the volume of the system, at
temperatures sufficiently close to Tc and with sufficiently
small magnetic fields, and if the thermal conductivity of
the sample is large and the process not very fast there is
no reason to assume that a large portion of the system
would have an undefined temperature. Note that it is
sufficient that there is one situation where the inconsis-
tency clearly exists to validate our argument. Achilles’
heel doesn’t have to be more than a tiny fraction of the
entire body area.
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VII. DISCUSSION

The Faraday electric field is a consequence of Maxwell’s
equations and is unavoidable. The fact that electric fields
in superconductors give rise to dissipation is well known
from experiments with ac currents or electromagnetic
waves incident on superconductors [8], and is predicted
by BCS theory [8]. So how can this inconsistency be
resolved?

If the processes occurs always infinitely slowly, the
Joule heat and associated entropy go to zero and the in-
consistency is resolved. However, there is no mechanism
to make these processes proceed infinitely slowly if κ is
large. Furthermore, we know from experiments that su-
perconductors in magnetic fields can be cooled or heated
and reach equilibrium states at the new temperatures in
finite time.

Another way to resolve this inconsistency would be
to assume that the final state depends on the process.
Neither I nor (I suspect) anybody else is willing to go
back to that notion, that was discarded in 1933. The
contrary notion is an integral part of the conventional
theory.

I argue that the only other way to resolve this incon-
sistency is to assume that in the particular situation con-
sidered here, where the electric field arises from a change
in temperature, the superconductor behaves differently
than in other situations with electric fields, namely here
no normal current is generated and no dissipation takes
place.

That is not predicted by the conventional theory [1].
In addition, within the conventional theory that is im-
possible, for the following reason. From Ampere’s law,∮

~B · ~d` =
4π

c
I (25)

where I is the total current, yielding

I =
c

4π
hH0. (26)

where h is the height of the cylinder. Therefore, the total

current I is independent of temperature. However, the
Faraday electric field transfers momentum to the super-
current, as well as to the body as a whole. In order for
the current to stay the same, there has to be a mecha-
nism for momentum transfer between electrons and the
body as a whole.

Within the conventional theory of superconductivity,
the only way to transfer momentum between electrons
and ions is through scattering processes involving nor-
mal electrons, the same processes that give rise to nor-
mal resistivity and Joule heat in the normal state [9]. If
these processes occur at a finite rate as in the situation
considered here, finite Joule heat and Joule entropy will
necessarily be generated. Therefore, the inconsistency
cannot be resolved within the conventional theory.

The only way to transfer momentum between electrons
and ions without dissipation other than infinitely slowly
is if electrons have negative effective mass. If so, an exter-
nal force acting on the electron gives rise to acceleration
in opposite direction to the force because the difference in
momentum is transferred to the body, without scattering
processes and associated dissipation.

This then implies that to resolve the inconsistency
pointed out in this paper charge carriers in supercon-
ductors have to be holes [10] rather than electrons. This
is not required within the conventional theory but is re-
quired within the alternative theory of hole supercon-
ductivity [11]. We have shown that within that theory
there is momentum transfer between electrons and ions
without dissipation in the normal-superconductor and
superconductor-normal transitions in the presence of a
magnetic field [7, 12, 13].
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