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Alfven’s theorem states that in a perfectly conducting fluid magnetic field lines move with

the fluid without dissipation. When a metal becomes superconducting in the presence of a
magnetic field, magnetic field lines move from the interior to the surface (Meissner effect)

in a reversible way. This indicates that a perfectly conducting fluid is flowing outward.

I point this out and show that this fluid carries neither charge nor mass, but carries
effective mass. This implies that the effective mass of carriers is lowered when a system

goes from the normal to the superconducting state, which agrees with the prediction

of the unconventional theory of hole superconductivity and with optical experiments
in some superconducting materials. The 60-year old conventional understanding of the

Meissner effect ignores Alfven’s theorem and for that reason I argue that it does not

provide a valid understanding of real superconductors.
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1. Introduction

When a conducting fluid moves, magnetic field lines tend to move with the fluid, as

a consequence of Faraday’s law.1 If the fluid is perfectly conducting, the lines are

“frozen” in the fluid. That is known as “Alfven’s theorem”.2 No dissipation occurs

when a perfectly conducting fluid together with magnetic field lines move. If the

fluid is not perfectly conducting, there will be relative motion of magnetic field lines

with respect to the fluid and Joule heat will be dissipated.1 Even for non-perfectly

conducting fluids, as P. H. Roberts points out,3 “Alfven’s theorem is also helpful in

attacking the problem of inferring unobservable fluid motions from observed mag-

netic field behavior”. For example, measurements of magnetic field variations near

one of Jupiter’s moons demonstrated the existence of an unobservable conducting

fluid below its surface.4 This paper is based on Roberts’ principle.
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Fig. 1. (a) An example illustrating Alfven’s theorem for a conducting fluid.1 Fluid flow across

magnetic field lines causes the field lines to bow out. (b) The Meissner effect in a superconductor.

The red arrows show the hypothesized motion of fluid, by analogy to the left panel.

In the transition from normal metal to superconductor in the presence of a

magnetic field, magnetic field lines move out of the interior of the system. This is

called the Meissner effect. The transition is thermodynamically reversible, i.e. it

occurs without dissipation under ideal conditions. In both the normal and the su-

perconducting states of the metal there are mobile electric charges, which certainly

qualify as a conducting fluid. Thus it is logical to infer that the motion of magnetic

field lines in the normal-superconductor transition is associated with the motion of

charges, specifically that the motion of magnetic field lines reflects the motion of

charges. In this paper we propose that this is indeed the case, and explain what

the nature of this conducting fluid is and what this fluid motion carries with it

in addition to the magnetic field. The relation between Alfven’s theorem and the

Meissner effect is shown schematically in Fig. 1.

Instead, the conventional (BCS) theory of superconductivity5 says that the out-

ward motion of magnetic field lines in the normal-superconductor transition is de-

termined by quantum mechanics and energetics and is not associated with the

outward motion of any charges. We will argue that this is incorrect.

In earlier work we have used related concepts to explain the physics of the

Meissner effect based on the theory of hole superconductivity proposed to describe

all superconducting materials.6 This will be discussed later in the paper.

2. Why Conventional BCS Theory Does not Explain the Meissner

Effect

Because in this paper we propose an understanding of the Meissner effect which is

radically different from the generally accepted one, we first briefly review here the

reasons for why we argue that the conventional theory of superconductivity does

not explain the Meissner effect.6

In addressing the Meissner effect, Bardeen, Cooper and Schrieffer (BCS)7 con-

sidered the linear response of a system in the BCS state to the perturbation
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Fig. 2. The BCS explanation of the Meissner effect. The system (cylinder, top view) is initially in

the BCS state (left panel) with no magnetic field. Its linear response to the magnetic field shown
in the middle panel (dots) is computed to first-order in the magnetic field. The result is the state

shown in the right panel, with a surface current J circulating.

created by a magnetic field, as shown in Fig. 2. The perturbing Hamiltonian is

the linear term in the magnetic vector potential ~A that results from the kinetic

energy (~p− (e/c) ~A)2/2m:

H1 =
ie~
2mc

∑
i

(~∇i ·A+ ~A · ~∇) . (1)

This perturbation causes the BCS wavefunction |ΨG〉 to become, to first-order in
~A

|Ψ〉 = |ΨG〉 −
∑
n

〈Ψn|H1|ΨG〉
En

|Ψn〉 , (2)

where |Ψn〉 are states obtained from the BCS state |ΨG〉 by exciting 2 quasiparticles,

and En is the excitation energy. The expectation value of the current operator ~Jop
with this wavefunction gives the electric current ~J :

~J = 〈Ψ| ~Jop|Ψ〉 = − c

4π
K ~A (3a)

where K is the “London Kernel”.5 We omit wavevector dependence here for sim-

plicity. In the long wavelength limit this calculation yields7

K =
1

λ2L
, (3b)

where λL is the London penetration depth. Equation (3) is the (second) London

equation. In combination with Ampere’s law, Eq. (3) predicts that the magnetic

field does not penetrate the superconductor beyond a distance λL from the surface,

where the current ~J circulates, as shown schematically in Fig. 2 (right panel).

This calculation is in essence what BCS and others following BCS did8–15 in

examining issues associated with gauge invariance. Note that it uses only the BCS

wavefunction in and around the BCS state, namely the ground state wavefunction
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Fig. 3. What the Meissner effect really is: the process by which a normal metal becomes super-

conducting in the presence of a magnetic field throughout its interior initially. The simplest route
in this process (not the only one) is depicted in this figure. The superconducting region (white

region) expands gradually from the center to fill the entire volume, expelling the magnetic field

in the process.

|ΨG〉 and the wavefunctions |Ψn〉 that result from breaking one Cooper pair at a

time. The wavefunction of the normal metal never appears in these calculations.

We argue that that this does not explain the Meissner effect. The Meissner effect

is what is shown in Fig. 3: the process by which a system starting in the normal

metallic state expels a magnetic field in the process of becoming a superconductor.

It cannot be explained by starting from the assumption that the system is in the

final BCS state and gets perturbed by H1. Explaining this process requires explain-

ing how the interface between normal and superconducting regions moves (center

panel in Fig. 3). That is the subject of this paper. Because calculations of the sort

described in Eqs. (1)–(3) contain no information about what is the nature of the

initial state when the Meissner effect starts, namely the normal metal, they cannot

be a microscopic derivation of the Meissner effect.

There have also been calculations16–18 of the kinetics of the transition pro-

cess using time-dependent Ginzburg–Landau theory.19–21 However that formalism

is phenomenological and involves a first-order differential equation in time with

real coefficients for the time evolution of the order parameter. Hence it describes

irreversible time evolution, and is therefore not relevant to the Meissner effect for

type-I superconductors, which is a reversible process.

During the process of field expulsion, as well as its reverse, the process where

a superconductor with a magnetic field excluded turns normal and the field pene-

trates, a Faraday electric field is generated that opposes the process. This electric

field drives current in direction opposite to the current that develops. So it is nec-

essary to explain:

(i) How can a Meissner current start to flow in direction opposite to the Faraday

electric force resisting magnetic flux change (Lenz’s law)?

(ii) How is the angular momentum of the developing supercurrent compensated so

that momentum conservation is not violated?
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(iii) When a supercurrent stops, what happens to the angular momentum that the

supercurrent had?

(iv) How can a supercurrent stop without generation of Joule heat and associated

with it an irreversible increase in the entropy of the universe that is known

not to occur?

None of these questions are addressed in the BCS literature.

3. Alfven’s Theorem

When a conducting fluid moves with velocity ~u in the presence of electric and

magnetic fields ~E and ~B, electromagnetism dictates that an electric current density1

~J = σ

(
~E +

1

c
~u× ~B

)
(4)

exists, where σ is the electrical conductivity of the fluid. In particular, for a perfectly

conducting fluid σ =∞ and

~E = −1

c
~u× ~B . (5)

Figure 1 shows in the left panel qualitatively how this leads to Alfven’s theorem.

The horizontal motion of the fluid generates a current J pointing out of the paper

which generates a counterclockwise magnetic field indicated by the dashed circle,

which added to the original magnetic field gives curvature to the magnetic field lines

that were originally straight. Thus, the magnetic field lines bend in the direction of

the fluid motion. Analogously we suggest in this paper that the motion of magnetic

field lines in the right panel of Fig. 1 is associated with motion of a conducting fluid

as indicated by the red arrows.

Using Faraday’s and Ampere’s laws,

~∇× ~E = −1

c

∂ ~B

∂t
, (6)

~∇× ~B =
4π

c
~J (7)

Eq. (4) yields

∂ ~B

∂t
= ~∇× (~u× ~B) +

c2

4πσ
∇2 ~B (8)

and in particular for a perfectly conducting fluid

∂ ~B

∂t
= ~∇× (~u× ~B) . (9)

Equation (9) implies that magnetic field lines are frozen into the fluid. The proof

is given in Appendix A. This implies that for a perfectly conducting fluid outward

motion of field lines is necessarily associated with outward motion of the fluid.
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For generality, we could assume that in addition to the current given by Eq. (4)

there is a “quantum supercurrent” ~Js generated by an unknown quantum mecha-

nism provided by BCS or another microscopic theory:

~J = σ

(
~E +

1

c
~u× ~B

)
+ ~Js . (10)

Instead of Eq. (8), we would obtain from Eq. (10)

∂ ~B

∂t
= ~∇× (~u× ~B) +

c2

4πσ
∇2 ~B +

c

σ
~∇× ~Js . (11)

Consider a long metallic cylinder initially in the normal state with uniform

magnetic field in the ẑ direction. In cylindrical coordinates and assuming transla-

tional invariance in the ẑ and θ̂ (azimuthal) directions Eq. (11) yields for the time

evolution of the magnetic field ~B = B(r, t)ẑ

∂B(r, t)

∂t
= −1

r

∂(rurB)

∂r
+
c

σ

1

r

∂

∂r
(rJsθ) . (12)

Note that the last term, the contribution of the “quantum supercurrent” to the

time evolution of the magnetic field, decreases as σ increases. Thus it is natural

to conclude that for large σ at least the time evolution of the magnetic field is

dominated by the first term in Eq. (12), which requires radial motion of the fluid,

ur 6= 0, i.e. motion of the conducting fluid in direction perpendicular to the field

lines.

Within the conventional theory of superconductivity5 ur = 0 and the expulsion

of magnetic field has to be explained solely by the last term in Eq. (12). The

explanation has to be valid for any value of σ, since normal metals of widely varying

conductivities expel magnetic fields when they become superconducting. How this

happens within the conventional theory has not been explained in literature.

Instead, in this paper we will assume that the last term in Eq. (12) does not

exist and explain the Meissner effect in a natural way through the outward motion

of a perfectly conducting fluid.

4. The Puzzle

A perfectly conducting fluid moving from the interior to the surface when a normal

metal becomes superconducting would satisfy Eq. (9) and as a consequence, as

shown in Appendix A, would carry the magnetic field lines with it and explain the

Meissner effect. However, there are obvious problems with this explanation:

(1) If the fluid is charged, this motion would result in an inhomogeneous charge

distribution, costing an enormous electrostatic potential energy. So this cannot

happen.

(2) Even if the fluid is charge neutral, like a neutral plasma composed of elec-

trons and ions with equal and opposite charge densities, outward motion would be

associated with outward mass flow, generating an enormous mass imbalance. This

cannot happen. Plasmas cannot expel magnetic fields by outward motion.
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(3) Furthermore, in a solid the positive ions cannot move a finite distance. The

only mobile charges are electrons.

So in order to explain the Meissner effect using Alfven’s theorem we need to

identify a charge-neutral mass-neutral electricity-conducting fluid that moves from

the interior to the surface in the process of the metal becoming superconducting

without dissipation.

And this poses an additional question: if this fluid carries neither charge nor

mass, what does it carry?

The next section provides the answers.

5. The Answers

Charge carriers in electronic energy bands can be electrons or holes.22 We will need

both to explain how magnetic flux is expelled.

Consider a long metallic cylinder of radius R, of a material that is a type-I

superconductor, in a uniform applied magnetic field H = Hc(T ) parallel to its axis,

where Hc(T ) is the critical magnetic field at temperature T ,5 that is initially at

temperature higher than T . When the system is cooled to temperature T it will

become superconducting and expel the magnetic field to a surface layer of thickness

λL, the London penetration depth at that temperature, typically hundreds of Å,

given by5

1

λ2L
=

4πnse
2

m∗c2
(13)

with ns the density of superfluid carriers and m∗ their effective mass.

Assume that the transition proceeds as follows. Initially, in a central core of

radius rc a perfectly conducting fluid of ns electrons and ns holes per unit volume

forms, both carriers with effective mass m∗, with rc given by

rc =
√

2RλL (14)

as shown in the left panel of Fig. 4. Then, assume this fluid flows radially outward

until it reaches the surface. Assuming it is incompressible, it will at the end occupy

an annulus of thickness λL adjacent to the surface, since

πr2c = 2πRλL . (15)

Because of Alfven’s theorem, the magnetic field lines that were initially in the

region r ≤ rc flow out with the fluid. No magnetic field line can cross either the

inner or the outer boundary of this fluid, therefore the magnetic field lines that were

outside initially are pushed further out as the fluid moves out, and in the interior

no magnetic field ever exists. The end result is what is shown on the right panel

of Fig. 4: no magnetic field in the region r < R− λL. The magnetic field has been

expelled from the interior and remains only in a surface layer of thickness λL, as

occurs in the Meissner effect.
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2(R-λL) 

B=0 

Fig. 4. Simple model for the Meissner effect in a cylinder (top view). A perfectly conducting

fluid of electrons and holes occupies initially the central region (of radius rc) of a cylinder of radius
R (left panel) and flows to the surface where it occupies a ring of thickness λL. Points indicate

magnetic field pointing out of the paper, initially uniformly distributed across the cylinder cross

section.

There is however a small difference. Frozen field lines would imply that in the

final state the magnetic field is uniform in the region R − λL < r < R and drops

discontinuously to zero at r = R− λL. This is not so in the Meissner effect, rather

the magnetic field near the surface is given by (to the lowest order in λL/R)

H(r) = Hce
(r−R)/λL . (16)

The reason for the difference is that in assuming that Eq. (9) is valid at all times

we are ignoring transient effects and the inertia of charge carriers. This is a minor

difference, in particular the magnetic field flux through the region r ≤ R is the

same for Eq. (16) as it is for a uniform Hc between R− λL and R.

The fluid that flowed out is charge neutral, by assumption, so no charge im-

balance results from this process. Furthermore no mass imbalance results from this

process either. To understand this one has to remember that “holes” are not real

particles, they are a theoretical construct.22 When holes flow in a given direction,

physical mass is flowing in the opposite direction. This is illustrated in Fig. 5. So

the process that we envision shown in Fig. 4 would result if we have conduction in

two bands, one close to empty and the other one close to full, with the same density

of electrons and holes. This is depicted in Fig. 6.

But if neither charge nor mass flowed out, what quantity is being transported

out in the process shown in Fig. 4?

The answer is, effective mass. The effective mass of electrons is given by the

curvature of the energy bands in Fig. 6. Having holes with positive charge and

positive effective mass flowing out is equivalent to having electrons with negative

charge and negative effective mass flowing in, as shown in Fig. 5. So the electron

band carriers carry out positive effective mass, and the hole band carriers carry in

negative effective mass, which is equivalent to also carrying out positive effective

mass. This implies that there is a net outflow of effective mass in the process where

a metal turning superconductive expels magnetic field. In addition to expelling

magnetic field, the system expels effective mass
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k k 

= 

Fig. 5. Holes flowing in the positive k direction (left panel) corresponds to electrons flowing in

the negative k direction (right panel).

+ 

k 

m
* 
flow 

k 

(-m
*
)

 
flow 

εF 

Fig. 6. The left panel shows electrons flowing out (positive k direction) carrying out positive

effective mass. The right panel shows holes flowing out (see left panel of Fig. 5), carrying in
(negative k direction) negative effective mass, which is equivalent to carrying out positive effective

mass also. Both of these flows occur in Fig. 4. εF is the Fermi energy.

As a consequence, in the process of a metal turning superconducting the effective

mass of the carriers in the system decreases. We discuss this further in Sec. 8.

6. Kinetics of the Fluid Motion

Equation (9) guarantees that no magnetic field lines can cross the boundaries of our

annulus of perfectly conducting fluid as it moves outward, as shown in Appendix

A. Let us consider the current distribution. The details of the current distribution

will depend on the initial conditions. We assume initial conditions so that it is only

the electrons that have azimuthal velocity. Figure 7 shows an intermediate state in

the process.

r0(t) is the inner radius of the annulus of fluid that is moving outward with

speed ṙ0. The fluid velocity field is given by

~u(r) = ṙ0
r0
r
r̂ . (17)

We assume that ṙ0 is of order of the speed at which superconductors expel magnetic

fields in experiments,23 typically mm/s, hence much smaller than the speed of light.

The magnetic field is zero for r ≤ r0 according to Alfven’s theorem, and it is given
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r0 

E 

FE 

FB 

FB 

ri 

r0 
FE 

vs 

FLr 
vs 

Fig. 7. Expulsion of magnetic field (dots) through motion of perfectly conducting fluid. The

charge distribution has azimuthal symmetry but only some of the carriers are shown for clarity.
Both electrons and holes move radially out with speed ṙ0. In addition electrons have azimuthal

speed vs that nullifies the magnetic field in the interior. The electric and magnetic Lorentz forces

are balanced in the azimuthal direction for both electrons and holes. For electrons there is also a
radial Lorentz force FLr that is balanced by quantum pressure (see text).

by Hc for r � r0. It cannot go to zero discontinuously at r0 unless the current

density at r = r0 is infinite. So we assume it goes continuously to zero in a region

of thickness λ adjacent to the surface where current flows. It is natural to assume

that the decay is exponential, so we assume the form

~H(r) = Hc(1− e(r0−r)/λ)ẑ . (18)

In Sec. 7, we will show that the decay is indeed exponential and that λ = λL, with

λL the London penetration depth given by Eq. (13).

Using Faraday’s law and the fact that the magnetic field is zero in the deep

interior we obtain for the Faraday electric field

~E(r) =
ṙ0
c

r0
r
Hc(1− e(r0−r)/λ)θ̂ (19)

(to lowest order in λ/r). The azimuthal velocity for the electrons in the annulus is

~vs(r) = − c

4πensλ
Hce

(r0−r)/λθ̂ (20)

giving rise to azimuthal current density

~J = nse~vs = − c

4πλ
Hce

(r0−r)/λθ̂ . (21)

The current density Eq. (21) satisfies Ampere’s law

~∇× ~H =
4π

c
~J . (22)
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From Eq. (18)

∂ ~H

∂t
= − ṙ0

λ
~H . (23)

and Eq. (9) is satisfied to lowest order in λL/r, with ~u given by Eq. (17). The

electric field, magnetic field and fluid velocity equations, Eqs. (18), (16) and (17)

respectively are related by the condition

~E = −1

c
~u× ~H (24)

in agreement with Eq. (5).

The Lorentz force

~FL = q

(
~E +

1

c
~v × ~B

)
≡ ~FE + ~FB (25)

in the azimuthal direction is zero for both electrons and holes with vr = u(r), as

shown schematically in Fig. 7. For electrons there is also a Lorentz force in the

radial direction

FLr =
e

c
vsHr̂ = − 1

4πnsλ
e2(r0−r)/λH2

c r̂ , (26)

so in order for this fluid to move outward there has to be an outward force that

compensates the inward force Eq. (26). That outward force Fr = −FLr (per unit

area) is called “Meissner pressure” and it arises from the difference in energy be-

tween normal and superconducting states. From Eq. (26) we obtain the work done

by Fr per unit area per unit time:∫ ∞
r0

drFrvrns =
H2
c

8π
ṙ0 (27)

which is the rate of change of magnetic energy per unit area as the phase boundary

moves. This energy is provided by the condensation energy of the superconductor.

7. Dynamics of the Fluid Motion

Here we show that the magnetic and velocity fields discussed in Sec. 5 indeed have

exponential dependence on r as assumed and decay length λ given by the London

penetration depth λL [Eq. (13)].

The equation of motion for electrons of effective mass m∗ in electric and mag-

netic fields in a perfectly conducting fluid is

d~v

dt
=

e

m∗
~E +

e

m∗c
~v × ~H . (28)

Using the relation between total and partial time derivatives, Eq. (28) becomes

∂~v

∂t
+ ~∇

(
v2

2

)
− ~v × (~∇× ~v) =

e

m∗
~E +

e

m∗c
~v × ~H . (29)
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In cylindrical coordinates, the velocity field is

~v(r, t) = ~vθ(r, t)θ̂ +
r0
r
ṙ0r̂ , (30)

so for the azimuthal direction Eq. (29) yields

∂vθ
∂t

+ ṙ0
r0
r2

∂

∂r
(rvθ) =

e

m∗
E +

e

m∗c
ṙ0
r0
r
H . (31)

On the other hand, by taking the curl on both sides of Eq. (29) we find

∂ ~w

∂t
= ~∇× [~v × ~w] (32)

with

~w ≡ ~∇× ~v +
e

m∗c
~H , (33a)

~w = w(r, t)r̂ , (33b)

and from Eq. (33a)

w(r, t) =
1

r

∂

∂r
(rvθ) +

e

m∗c
H(r, t) . (34)

In cylindrical coordinates Eq. (32) is

∂w

∂t
= −r0

r
ṙ0
∂w

∂r
(35)

that is satisfied by

w(r, t) = g

(
r − r0

r
ṙ0t

)
. (36)

with an arbitrary function g. Now at t = 0 we have from Eq. (34)

w(r, t = 0) =
e

m∗c
Hc , (37)

for all r, since the fluid has not started to move. Therefore, from Eq. (36)

w(r, 0) = g(r) =
e

m∗c
Hc , (38)

for all r. Therefore, w is simply given by

w(r, t) =
e

m∗c
Hc (39)

and from Eq. (34)

1

r

∂

∂r
(rvθ) =

e

m∗c
(Hc −H(r, t)) . (40)

We now replace Eq. (40) in the equation of motion (31) and obtain

∂vθ(r, t)

∂t
+ ṙ0

r0
r

e

m∗c
Hc =

e

m∗
E(r, t) . (41)
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Now from Ampere-Maxwell’s law

~∇× ~H =
4π

c
~J +

1

c

∂ ~E

∂t
(42)

and using that

Jθ = nsevθ , (43)

Eq. (42) yields

∂E

∂t
= −c∂H

∂r
− 4πnsevθ . (44)

Taking the time derivative of Eq. (41) and using Eq. (44)

∂2vθ
∂t2

= − ec

m∗
∂H

∂r
− 4πnse

2

m∗
vθ . (45)

Taking the space derivative of Eq. (40)

∂H

∂r
= −m

∗c

e

∂

∂r

(
1

r

∂

∂r
(rvθ)

)
(46)

and replacing Eq. (46) in Eq. (45)

1

c2
∂2vθ
∂t2

=
∂

∂r

(
1

r

∂

∂r
(rvθ)

)
− 4πnse

2

m∗c2
vθ . (47)

Equation (47) describes the full time dependence of the process discussed in Sec. 6

including the initial transient when the fluid starts to move and the azimuthal

current is established. The initial conditions are

vθ(r, t = 0) = 0 , (48a)

∂vθ(r > 0, t)

∂t

∣∣∣∣
t=0

= 0 , (48b)

∂vθ(r = 0, t)

∂t

∣∣∣∣
t=0

=
e

m∗c
ṙ0Hc . (48c)

Now in Sec. 6, we assumed for the azimuthal velocity in the steady state situation

vθ(r, t) = − c

4πensλ
Hce

(ṙ0t−r)/λ . (49)

Its second time derivative is

1

c2
∂2vθ
∂t2

=

(
ṙ0
c

)2
vθ
λ2

. (50)

Since we assume ṙ0 � c, we conclude that Eq. (50) is completely negligible and

hence that after an initial transient where the velocity field is established, the left-

hand side of Eq. (47) is completely negligible. In steady state then Eq. (47) yields

∂

∂r

(
1

r

∂

∂r
(rvθ)

)
− 1

λ2L
vθ = 0 (51)
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with

1

λ2L
=

4πnse
2

m∗c2
. (52)

the same as Eq. (13) for superconductors.

The exact solution of Eq. (51) is simply obtained in terms of Bessel functions.24

To lowest order in λL/r it is

vθ = Ce−r/λL (53)

where C is independent of r. To find C, we use the fact that except for the initial

transient we can ignore the Maxwell term in Ampere–Maxwell’s law Eq. (42), hence

from Eq. (44)

vθ = − c

4πnse

∂H

∂r
(54)

and replacing in Eq. (51) and using Eq. (52)

∂

∂r

1

r

∂

∂r
(rH)− 1

λ2L
(H −Hc) = 0 (55)

so that H −Hc and vθ obey the same equation. To lowest order in λL/r again the

solution is

H(r) = Hc − C ′e−r/λL . (56)

Now we use the condition H(r = r0) = 0 to get

C ′ = er0/λLHc (57)

hence

H(r) = Hc(1− e(r0−r)/λL) , (58)

the same as Eq. (18). Replacing Eq. (58) in Eq. (54) we finally obtain

vθ = − c

4πnseλL
Hce

(r0−r)/λL , (59)

i.e. the same as Eq. (20), with λ = λL.

Using Eq. (52), Eq. (59) can also be written as

vθ = − eλL
m∗c

Hce
(r0−r)/λL . (60)

Note that London’s equation for superconductors is

~∇× ~v = − e

m∗c
~H , (61)

so in cylindrical coordinates

1

r

∂

∂r
(rvθ) = − e

m∗c
H =

e

m∗c
Hc(e

(r0−r)/λL − 1) , (62)
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while Eq. (60) is, to the lowest order in λL/r

1

r

∂

∂r
(rvθ) =

e

m∗c
Hce

(r0−r)/λL , (63)

so the velocity field of our perfect conductor definitely does not satisfy London’s

equation.

8. Effective Mass Reduction

As discussed in Sec. 5, the outward motion of electrons corresponds to both effective

mass and bare mass flowing out, while the outward motion of holes corresponds to

effective mass flowing out and bare mass flowing in. So the process shown in Fig. 4

results in no bare mass flowing out, but there is a net outflow of effective mass.

For an electron in Bloch state ~k with band energy εk, we define the effective

mass m∗k by

1

m∗k
=

1

~2
∂2εk
∂k2

(64)

assuming there is no angular dependence for simplicity. For a given band we can

define an effective mass density by

ρm∗ =

∫
occ

d3k

4π3
m∗k , (65)

where the integral is over the occupied (by electrons) states in the band. We can

also of course define a bare mass density

ρm =

∫
occ

d3k

4π3
me . (66)

Both ρm and ρm∗ are zero for an empty band, for a full band ρm∗ = 0 and ρm 6= 0.

We can also define the associated mass and effective mass currents

~jm =

∫
occ

d3k

4π3
me~vk , (67)

~jm∗ =

∫
occ

d3k

4π3
m∗k~vk (68)

with

~vk =
1

~
∂εk

∂~k
. (69)

Note that the effective mass current density can also be written in the simple form

~jm∗ =

∫
occ

d3k

4π3

(
∂εk
∂~vk

)
. (70)

Both real mass and effective mass currents satisfy continuity equations:

~∇ ·~m +
∂ρm
∂t

= 0 . (71a)
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~∇ ·~m∗ +
∂ρm∗

∂t
= 0 . (71b)

When there is conduction in more than one band, the contributions from each band

to the densities and currents simply add. For the case under consideration here, we

have

~∇ ·~m,t = 0 , (72a)

~∇ ·~m∗,t = −∂ρm
∗,t

∂t
6= 0 , (72b)

where by the subindex t (total) we mean the sum over both bands shown in Fig. 6.

We assume that the bands in Fig. 6 are respectively close to empty and close to

full, so that the effective mass can be taken to be independent of k for the occupied

states for the almost empty band and for the unoccupied states for the almost full

band. Near the top of the band m∗k [Eq. (64)] is negative and we define the effective

mass of holes near the top of the band as

m∗h = −m∗k (73)

and for electrons near the bottom of the band

m∗e = +m∗k . (74)

We have then for both bands, denoted by e and h

ρem∗ =

∫
occ

d3k

4π3
m∗ ≡ nem∗e , (75a)

ρhm∗ =

∫
unocc

d3k

4π3
m∗ ≡ nhm∗h (75b)

and furthermore assume ne = nh = ns, so that no net outflow of mass occurs, with

ns the superfluid density.

In the process shown in Fig. 4 there is a net outflow of ne electrons and nh holes,

carrying out effective massm∗e andm∗h, respectively, per carrier, in the process where

the magnetic field is expelled, i.e. in the process where the system goes from the

normal to the superconducting state. This implies

∆ρm∗ ≡ ρnm∗ − ρsm∗ = ns(m
∗
e +m∗h) (76)

where the superscripts n and s refer to normal and superconducting states. There-

fore,

ρsm∗ = ρnm∗ − ns(m∗e +m∗h) . (77)

which says that the effective mass per carrier is lowered by (m∗e + m∗h) when the

system goes from the normal to the superconducting state and expels the magnetic

field by expelling electrons and holes.

Now recall that ns, the superfluid density in the superconducting state, equals

the density of charge carriers in the normal state, which is ne for a band close to
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cool 

normal metal superconductor 

Hole superconductivity 

Fig. 8. In the normal state of the metal, the band is almost full, with nh holes per unit volume
that have effective mass m∗h. As the metal becomes superconductor, the holes move from the top

to the bottom of the band. This gives a reduction in the effective mass density of ns(m∗e+m∗h),

with m∗e the effective mass of electron carriers at the bottom of the band.

empty and is nh for a band close to full. Therefore, our result Eq. (77) is represented

with what is shown in Fig. 8. If the normal metal has a band that is almost full,

with nh hole carriers with effective mass m∗h (left panel), its effective mass density

is

ρnm∗ =

∫
occ

d3k

4π3
m∗k = −

∫
unocc

d3k

4π3
m∗k = nhm

∗
h . (78)

The right panel of Fig. 8 depicts nh empty states at the bottom of the band. The

effective mass density for that situation is

ρsm∗ =

∫
occ

d3k

4π3
m∗k = −

∫
unocc

d3k

4π3
m∗k = −nhm∗e . (79)

Therefore, Eq. (77) is satisfied.

As seen in Fig. 8, the physics we are finding requires that in the normal state

the charge carriers are holes, as proposed in the theory of hole superconductivity.6

Furthermore, Fig. 8 indicates that when the system goes from normal metal to

superconductor the holes near the top of the band “Bose condense” into states at

the bottom of the band. We discuss this further in Sec. 11.

9. Angular Momentum Conservation

The important issue of angular momentum conservation needs to be addressed. In

the process shown in Fig. 4, the final state has angular momentum given by25

L = (2πRλLhns)mevsR =
mec

2e
R2hHc . (80)

How did electrons acquire this angular momentum,a and how is angular momentum

conserved?

aThe magnitude of the angular momentum given by Eq. (80), for example for a cylinder of radius

R = 1cm, height h = 5 cm and magnetic field Hc = 200 G is L = 2.84 mg ·mm2/s.
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For the discussion in Sec. 6 we assumed initial conditions so that only electrons

have azimuthal velocity. However, let us consider first the simpler situation where

the initial velocity is zero for both negative and positive charges.

As the perfectly conducting fluid starts moving outward, after a time t0 ∼ λL/ṙ0
negative and positive charges near the inner boundary have acquired equal and

opposite azimuthal velocities due to the action of the magnetic Lorentz force, giving

rise to the azimuthal current density Eq. (21) as the sum of both contributions. The

total angular momentum is thus zero. As the fluid moves out, both negative and

positive charges increase their angular momentum, and at the end they both attain

half the value Eq. (20), but their sum remains zero at all times. Thus conservation

of angular momentum follows naturally in this scenario. However, it still needs to be

explained how the charges increase their angular momentum as the fluid moves out,

given that we said in Sec. 6 that the electric and magnetic forces in the azimuthal

direction are balanced for both negative and positive charges (Fig. 7).

The reason is, the treatment given in Sec. 6 was approximate, valid to lowest

order in λL/r. Recall also that we found for example that Eq. (9) was satisfied only

to lowest order in λL/r. An exact treatment is more complicated and requires the

use of Bessel functions. One finds that in fact the electric and magnetic forces are

not exactly balanced, the electric force is slightly larger, providing the necessary

torque so that the azimuthal velocity does not slow down but rather stays constant

as the fluid moves out, thus imparting the increasing angular momentum to the

currents.

Going back to the scenario where only electrons have azimuthal velocity shown

in Fig. 7, it would require a very artificial initial condition: that both electrons and

holes initially have azimuthal velocity in counterclockwise direction given by half

the value Eq. (20), so that in the outward motion the Lorentz force causes the holes

to stop and the electrons to double their initial velocity. This is not what we say

happens in the Meissner effect.

In Sec. 10, we will discuss what really happens in the Meissner effect according

to the theory of hole superconductivity.6 But it should be clear from the discussion

here and in Sec. 6 that the essential physics of magnetic field expulsion follows

simply from these magnetohydrodynamic considerations.

10. What Really Happens

The process depicted in Fig. 4 shows the essential physics of what we argue is

required to expel the magnetic field in the normal-superconductor transition. But

it is only a caricature of what really happens, it cannot be the reality. In particular,

holes flowing out of the outer boundary of the annulus in Fig. 4 implies that electrons

are flowing into the outer boundary of the annulus. But where did those electrons

come from?

The theory of hole superconductivity provides the answer. We review the physics

here, discussed in earlier references.25–32 It requires that the normal state charge
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Fig. 9. Meissner effect according to the theory of hole superconductivity. As the normal elec-

trons become superconductive, their orbits (dotted circle) expand, and the resulting Lorentz force
propels the supercurrent. An outflow of hole carriers moving in the same direction as the phase

boundary restores charge neutrality and transfers momentum to the body as a whole to make it

rotate clockwise, without any scattering processes.

carriers are in a band that is almost full, with hole concentration ns that will become

the superfluid density.

First, the theory predicts that when electrons condense into the superconducting

state their orbits expand from a microscopic radius to radius 2λL.26 The radius is

determined by quantization of angular momentum.27

This orbit expansion is equivalent to an outflow of the electron negative charge

a distance λL. To preserve charge neutrality, an inflow of normal electrons has to

occur over that distance. These normal electrons are in a band that is almost full,

so they represent an inflow of negative effective mass carriers, or equivalently an

outflow of holes over the same distance. The process is depicted in Fig. 9.

The electric and magnetic Lorentz forces acting on the holes are balanced as

shown in Fig. 9, just as we showed in Fig. 7 in our “caricature” process. The holes

move out radially at speed ṙ0, the speed of motion of the phase boundary, with no

azimuthal velocity.

On the electrons, electric and magnetic forces are not balanced. We assume the

orbit expansion occurs at great speed (much larger than ṙ0). In expanding the orbit

to radius 2λL the electrons acquire azimuthal (counterclockwise) velocity

vs = − eλL
m∗c

Hc (81)

driven by the magnetic Lorentz force, with the electric Faraday force in the opposite

direction having negligible effect.25
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Fig. 10. Figure 9 redrawn replacing the outflowing holes by inflowing electrons. The electric and
magnetic forces on inflowing electrons FE and FH point in the same direction. Since the motion

is radial, this implies that another force must exist, Flatt, exerted by the periodic potential of the

ions on the charge carriers. By Newton’s third law, an equal and opposite force is exerted by the
charge carriers on the ions, Fon-latt, that makes the body rotate.

The Faraday electric field is slightly different than in our simple model of Sec. 6,

it is given by

~E =
ṙ0
c
Hce

(r−r0)/λL θ̂ (82a)

for r ≤ r0, and

~E =
ṙ0
c

r0
r
Hcθ̂ (82b)

for r ≥ r0. The azimuthal speed of electrons is

~vs(r) = − eλL
m∗c

Hce
(r−r0)/λL θ̂ (83)

for r ≤ r0 and zero for r > r0 (except for a small normal current induced by E25).

Note that the speed increases with r, in contrast to the situation in Sec. 6 where

it decreases (see Fig. 7). As the phase boundary moves further out, the Faraday

electric field slows down the azimuthal velocity Eq. (83) as the given point r gets

further away from the phase boundary, and both ~E and ~vs go to zero in the deep

interior.25

Figure 10 shows the same process as Fig. 9 with the outflowing holes replaced

by inflowing electrons. It clarifies the important issue of angular momentum bal-

ance.25,30 As the electrons in the expanding orbits acquire their azimuthal speed

their increasing angular momentum has to be compensated by the body as a whole

acquiring angular momentum in opposite direction. This happens through the back-

flow of electrons with negative effective mass, i.e. outflow of holes. The lattice exerts
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an azimuthal force Flatt on these electrons, and in turn these electrons exert a force

on the lattice Fon–latt that transfers angular momentum to the body without any

scattering processes that would lead to irreversibility. It is essential that the normal

state charge carriers are holes. This is a key issue explained in detail in Refs. 25,

29 and 31.

In summary, “what really happens” is not exactly the same but very similar in

spirit to the “caricature” process shown in Fig. 4 and discussed in Sec. 6, which

could be understood simply using (almost) purely classical concepts. The difference

here is that it is not the same electrons and holes that move continuously out, as in

Fig. 4. Rather, electrons right outside the phase boundary move out a distance λL
when they enter the superconducting state, and normal electrons from a distance up

to λL outside the phase boundary move in. The region inside the phase boundary

ends up in the superconducting state, having expelled nsm
∗
e and absorbed −nsm∗h

effective mass density in the process, or equivalently having lowered its effective

mass density by (m∗e +m∗h) per normal state carrier, as we discussed in Sec. 8.

11. The Physics of Hole Superconductivity

We have described the motion of magnetic field lines when a normal metal turns

superconducting using concepts used in describing the magnetohydrodynamics of

conducting fluids, and in particular Alfven’s theorem. Let us recapitulate our rea-

soning.

Starting from the observation that perfectly conducting fluids drag magnetic

field lines with them when they move, we suggested that the moving field lines in

the Meissner effect are dragged by a perfectly conducting fluid. We argued that

this fluid has to be both charge-neutral and mass-neutral in order to not generate

charge nor mass imbalance. We concluded that in order for this to happen it is

necessary that the system expels the same concentration of electrons and holes.

We found that this implies that when the system goes from normal to super-

conducting and expels a magnetic field it also expels effective mass, so the effective

mass in the system is reduced in going from the normal to the superconducting

state. The amount of effective mass reduction per superfluid carrier was found to

be independent of the magnitude of the magnetic field expelled. This then leads us

to the general conclusion that when a system turns superconducting the carriers

lower their effective mass, whether or not a magnetic field is present.

It is interesting to note that back in 1950 John Bardeen proposed a model of

superconductivity which had as an essential ingredient a reduction of the carriers’

effective mass upon entering the superconducting state.33 However the model did

not include the pairing concept, and in the subsequent BCS theory the effective

mass reduction concept was not incorporated.

Within the theory of hole superconductivity6 the interaction that gives rise

to pairing is a correlated hopping term ∆t in the effective Hamiltonian that in-

creases the mobility of carriers when they pair,34,35 or in other words decreases their

2050300-21

M
od

. P
hy

s.
 L

et
t. 

B
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 A

T
 S

A
N

 D
IE

G
O

 o
n 

05
/1

5/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



May 15, 2020 13:36 MPLB S0217984920503005 page 22

2nd Reading

J. E. Hirsch

effective mass. Superconductivity is driven by lowering of kinetic energy or equiva-

lently by effective mass reduction. There is a lowering of the effective mass of Cooper

pairs relative to the effective mass of the normal carriers,36–38 and this gives rise to

a London penetration depth that is smaller than expected from the normal state

effective mass.39 This in turn leads to an apparent violation40,41 of the low fre-

quency optical conductivity sum rule (Ferrell–Glover–Tinkham sum rule)42,43 that

was detected experimentally in several high Tc superconductors years after first

predicted.44–47

More fundamentally the theory predicts that carriers “undress” in the tran-

sition from the normal to the superconducting state,41,48,49 both lowering their

effective mass and increasing their quasiparticle weight.50 In a many-body system,

the quasiparticle weight is inversely proportional to the effective mass, a highly

dressed particle has both large effective mass and small quasiparticle weight and

vice versa.51 Clear experimental evidence for increase in the quasiparticle weight

upon onset of superconductivity has been found in cuprate superconductors.52

Even more fundamentally, the theory predicts that carriers undress from both

the electron–electron interaction and the electron–ion interaction.53–56 In the nor-

mal state of the system when the band is almost full, i.e. when the normal state

carriers are holes, carriers are “dressed” by the electron–ion interaction causing the

electrons at the Fermi energy to have negative rather than positive effective mass.

When the system turns superconducting, experiments and theory clearly show that

the ns superfluid carriers are “undressed” from the electron–ion interaction because

they behave as electrons with negative charge.58–63 For example, a rotating super-

conductor shows always a magnetic field in direction parallel, never antiparallel, to

its angular velocity.58

The latter was understood to reflect the fact that the wavelength of carriers

expands when they go from normal to superconducting.56 Normal state carriers at

the top of the band interact strongly with the discrete ionic potential and when

they become superconducting and their wavelength expands they no longer “see”

the discrete ionic potential, hence have “undressed” from it and behave as electrons

rather than holes. More specifically, the wavelength expansion was found to result

from electronic orbits expanding from a microscopic radius to radius 2λL in the

transition. All of this led us to conclude that “holes turn into electrons” in the

normal to superconducting transition.65,66 Based on this physics, supported by

quantitative calculations, Fig. 8 was proposed in 2010, Fig. 6 of Ref. 67. What

this means for the wavefunction of the carriers is what is shown in Fig. 11. In the

normal state, carriers at the Fermi energy are in “antibonding states”, with highly

oscillating wavefunction and high kinetic energy, while in the superconducting state

they adopt the same wavefunction that electrons have near the bottom of the band

in the normal state, i.e. bonding states, with smooth wavefunction and low kinetic

energy. Figure 8 expresses this fact.
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bonding state 

normal state 

antibonding  

     state 

superconducting  

          state 

εF 

Fig. 11. When a band is nearly full, carriers at the Fermi energy (indicated by εF ) are in anti-

bonding states (left panel), with highly oscillating wavefunction and high kinetic energy. Carriers

near the bottom of the band are in bonding states, with smooth wavefunction and low kinetic
energy. According to the finding in Fig. 8, when a system becomes superconducting and expels

electrons and holes, the wavefunction for the superconducting carriers becomes as shown in the

right panel of the figure, a bonding state. The large circles with negative charge on the right panel
represent the negatively charged ion with the orbital doubly occupied.

In this paper we have independently “rediscovered” Figs. 8 and 11 by finding

that the Meissner effect requires normal state carriers of density ns to lower their

effective mass by (m∗e +m∗h) as they become superconductive, or equivalently that

they change their effective mass from −m∗h to m∗e. This requires that the initial

state has a band that is almost full, with hole carriers of mass m∗h, and that in

becoming superconductive, the holes move from the top to the bottom of the band

as shown in Fig. 8.

The requirement that normal state carriers in a metal that can become a super-

conductor are holes rather than electrons31 follows directly from this physics. There

would be no way for carriers to lower their effective mass by (m∗e + m∗h) starting

with a normal state with electron carriers of effective mass m∗e.

12. Dissipation

In the process shown in Fig. 4, magnetic field lines are carried out by a perfectly

conducting fluid, and no dissipation is associated with that motion.1 However, Joule

heat is still generated due to the motion of magnetic field lines outside the region

occupied by the perfectly conducting fluid. Let us calculate that. At a given time,

the perfectly conducting fluid in Fig. 4 occupies an annulus r0 < r < r1, with

r21 = r20 + 2RλL . (84)

The electric field for r > r1 is

E(r) =
r0
r

ṙ0
c
Hc (85)

and the Joule heat dissipated per unit volume per unit time in the region r1 < r < R

is

∂w

∂t
= σ

ṙ20
c2
r20
r2
H2
c (86)
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with σ the conductivity in the normal region. The total heat per unit time dissipated

in the region r1 < r < R is

∂W

∂t
=

∫ R

r1

d3r
∂w

∂t
= 2πhH2

c

σ

c2
ṙ20r

2
0

∫ R

r1

dr
1

r
(87)

and integrated over time

W = 2πhH2
c

σ

c2
ṙ0

∫ R−λL

0

dr0r
2
0 ln(R/r1) (88)

assuming for simplicity that ṙ0 is time-independent.

Instead, let us assume that the magnetic field gets expelled through some un-

known quantum mechanism that does not involve the motion of a perfectly con-

ducting fluid, as in BCS. The same Eq. (87) applies with r0 replacing r1, hence

∂W0

∂t
= 2πhH2

c

σ

c2
ṙ20r

2
0

∫ R

r0

dr
1

r
(89)

and the total Joule heat dissipated is

W0 = 2πhH2
c

σ

c2
ṙ0

∫ R−λL

0

dr0r
2
0 ln(R/r0) . (90)

Carrying out these integrals we find, to the lowest order in λL/R

W0 =
2π

9
hR3H2

c

σ

c2
ṙ0 (91)

and

W = W0 −∆W , (92)

with

∆W = 12
λL
R
W , (93)

so the Joule heat dissipated is less when the process occurs through motion of a

perfectly conducting fluid as in Fig. 4. Alternatively, for the same amount of Joule

heat the process will be faster through the motion of a perfectly conducting fluid.

Something similar occurs for the Meissner effect. If we assume that the expulsion

of magnetic field occurs without any radial motion of charge, as in BCS, the Joule

heat dissipated is given approximately by30

Q0
J =

H2
c

8π

2πσ

c2
Rṙ0 . (94)

For a quantitative estimate, we assume σ is given by the Drude form σ = ne2τ/me

with τ the collision time, so σ = c2/(4λ2L)τ , ṙ0 = R/t0 with t0 the time to expel

the magnetic field, and with R = 1 cm, λL = 500 Å, Eq. (94) yields

Q0
J =

H2
c

8π
(2× 1010)

τ

t0
(95)
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N 

S S 

S S 
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Fig. 12. Expulsion of magnetic field through nucleation of several superconducting domains that

expand and merge. In the annuli of thickness λL adjacent to the phase boundaries supercurrent
flows, a Faraday field exists, and Joule heat is dissipated according to the conventional theory.57

so for example for τ = 10−11 s at low temperatures in a pure crystal and t0 = 1 s,

Q0
J is 20% of the superconducting condensation energy H2

c /8π. In addition, within

the conventional theory there will be Joule heat originating in the superconducting

region of thickness λL next to the phase boundary, due to the action of the Faraday

field on the normal electrons in that region,57 given by

∆QJ = 4
σ′

σ

λL
R
Q0
J (96)

with σ′ the conductivity of normal electrons (of density nn) in the superconducting

region, σ′/σ ∼ nn/(nn + ns). The correction Eq. (96) is small if λL � R. However

note that we are assuming that the flux expulsion occurs through the expansion

of a single domain as shown in Fig. 9. Consider instead the more realistic scenario

where the superconducting phase nucleates at several different points simultane-

ously, creating several domains that expand expelling magnetic field, as shown in

Fig. 12. Now we need to add the regions of thickness λL within each domain where

dissipation will take place according to the conventional theory for the calculation

of ∆QJ . This corresponds roughly to replacing R by R/N in Eq. (96), with N the

number of domains. So we conclude that if the transition occurs through nucleation

of many domains the Joule heat dissipated as the magnetic flux is expelled will be

drastically increased compared to our scenario where flux expulsion occurs with

accompanying fluid motion. Alternatively, for a given Joule heat the total time for

the field to be expelled will be much smaller when fluid motion and many domains

are involved.

It should be possible to observe this experimentally. Experimentally it should

be possible to realize the different domain scenarios by setting up appropriate tem-

perature or magnetic field gradients.
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13. Discussion

None of the physics discussed in this paper is part of the conventional theory of

superconductivity.5 About the Meissner effect the conventional theory simply says

that magnetic field lines move out because the superconducting state with magnetic

field excluded has lower energy than the normal state with magnetic field inside. The

dynamics of the Meissner effect and of the related effect of magnetic field generation

when a rotating normal metal becomes superconducting (London field)58,68 have

not been explained within the conventional theory. The BCS “proof” of the Meissner

effect5 discussed in Sec. 2 starts with the system in the superconducting state and

applies a magnetic field as a small perturbation, which is not the physics of the

Meissner effect.28

It is important to remember that the laws of classical physics that we used

in this paper always act, whether or not “quantum mechanics” also plays a role.

Specifically, in addition to explaining how ‘quantum mechanics’ causes magnetic

field lines to be expelled, the conventional theory has to explain how angular mo-

mentum is conserved and how the process overcomes the laws of classical physics

that say that magnetic field lines have great difficulty in moving through conducting

fluids, the more so the more conducting the fluid is, and that energy is dissipated

in the process, and entropy is generated. The normal-superconductor transition in

a magnetic field is a reversible phase transformation that occurs without entropy

generation in an ideal situation. Entropy is not generated when magnetic field lines

move following the motion of a perfectly conducting fluid, while entropy is generated

when magnetic field lines cut across a conducting fluid, whether or not quantum

mechanics plays a role. Within our theory, entropy is not generated locally around

the phase boundary when the phase boundary is displaced, while it would be within

the conventional theory. Based on this we have proposed that Alfven waves2 should

propagate along normal-superconductor phase boundaries if our theory is valid69

and not if the conventional theory is valid.

Within the conventional theory the only thing that flows out when a system goes

from normal to superconducting and expels a magnetic field is “phase coherence”.

Nobody has explained even qualitatively how this abstract concept explains the

physical processes that take place, that at face value appear to violate fundamental

laws of physics, namely the law of inertia, Faraday’s law, conservation of angular

momentum and conservation of entropy in reversible processes.25,28,30,32

Instead, in this paper, we have argued that magnetohydrodynamics strongly

suggests that the Meissner effect in superconductors is associated with outflow of a

perfectly conducting fluid in the normal-superconductor transition; that this per-

fectly conducting fluid needs to be composed of electrons and holes, to preserve

charge neutrality and mass homogeneity; that electrons becoming superconducting

flow out, and there is a backflow of normal antibonding electrons equivalent to an

outflow of normal holes, and that momentum is conserved by holes transferring
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it to the body as a whole. The process as we describe is reversible, as required

by thermodynamics, and satisfies the fundamental laws of physics. In this paper

we described the process in more detail than in earlier work25,28 and unexpectedly

found that it leads to a lowering of effective mass in going from normal to supercon-

ducting, in unexpected agreement with what the theory of hole superconductivity

has predicted for the last 30 years and was found experimentally in some high-

temperature superconductors.44–47,52 We also found in this paper that the process

requires normal state carriers to be hole-like for yet another reason that adds to

the many other reasons found in earlier work,6 and in contrast to the conventional

theory of superconductivity that is electron-hole symmetric.5 Macroscopic phase

coherence also follows naturally from this physics.56,66

The “population inversion” that we found in Fig. 8 is reminiscent of what oc-

curs in laser physics. It is interesting that in both realms it is associated with the

establishment of macroscopic quantum phase coherence.

In Ref. 67, we presented many other reasons for why the scenario shown in

Figs. 8 and 11 captures the essence of superconductivity. We argue that the fact

that in this paper we have “rediscovered” Figs. 8 and 11 from an entirely different

argument strongly supports the validity of this theoretical framework to describe

the real world. None of the commonly used model Hamiltonians70–73 to describe

correlated electrons in solids capture this physics. It represents a radical departure

from the conventional theory of superconductivity, where it is assumed that carriers

establish correlations between each other when they become superconducting but

do not change their intrinsic character, i.e. their wavefunction. Instead, in our sce-

nario carriers change their most essential characteristics, their quasiparticle weight

and effective mass, because their wavefunction changes, through the complete re-

distribution of energy level occupation depicted in Fig. 8. Note that in the Mott-

Hubbard transition as described by dynamical mean field theory74 electrons also

change their quasiparticle weight and effective mass in entering the low-temperature

Mott state.75 However, contrary to the physics discussed here, in that case the ef-

fective mass increases rather than decreases at low temperatures. Another situation

where the effective mass decreases at low temperatures when the system undergoes

a phase transition is proposed to be for metallic ferromagnetism.38

As shown in Ref. 67 and earlier papers, this physics also leads to a slight charge

inhomogeneity in the ground state of superconductors,76 with more negative charge

near the surface and more positive charge in the interior, and to macroscopic zero

point motion in the form of a spin current flowing near the surface of supercon-

ducting bodies in the absence of applied fields.54,77,78

We suggest that a valid microscopic theory of superconductivity has to be con-

sistent with these findings. The currently accepted conventional theory of super-

conductivity5 certainly is not.79,80
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Appendix A. Alfven’s Theorem

We prove Alfven’s theorem for the case of interest in this paper shown in Fig. 4.

Figure 13 shows a slice of our cylinder perpendicular to its axis evolving in time.

The full lines show the outer and inner perimeters of the perfectly conducting fluid

at time t, denoted by P1, P2, which are boundaries to the surfaces S1 and S2 which

become S′1 and S′2 at time t + dt, bounded by the dotted lines. We want to show

that the magnetic flux through S1 and S′1 are the same, as well as that through S2

and S′2. This then implies that the flux through the annulus does not change, and

also that the flux through the central region inside the annulus remains zero.

The change in magnetic flux through one of these surfaces, dφi (i = 1 or 2) is

dφi =

∫
S′i

~B(~r, t+ dt) · d~a−
∫
Si

~B(~r, t) · d~a (A1)

Using

~B(~r, t+ dt) = ~B(~r, t) +
∂B(~r, t)

∂t
dt (A2)

we have

dφi =

∫
dSi

~B(~r, t) · d~a+ dt

∫
Si

∂B(~r, t)

∂t
· d~a (A3)

with dSi = S′i − Si. The differential of area is

d~a = ~v × d~̀ (A4)

where ~v is the velocity of the fluid. Using Eq. (A4) for the first integral and Eq. (9)

for the second integral in Eq. (A3) we obtain

dφi = dt

∫
Pi

~B(~r, t) · (~v × d~̀) + dt

∫
Si

~∇× (~v × ~B) · d~a (A5)

P1 

P2 

S2 

S'2 

S1 

S'1 

   

r  
v  dt 

  d

r 

l 

Fig. 13. Outward motion of perfectly conducting region. P1 and P2 are the outer and inner
boundaries of the perfectly conducting region, indicated by full circles. dS1 (dS2) is the area

bounded by the outer (inner) full circle and the outer (inner) dotted circle.
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r 
v dt                                                                                 

           

        d

r 
l  

                                                                

r 
v dt   

S1 

S'1 

R1 

P1 

P2 

S2 

S'2 

nS 

nS' 

R1 

nR 1 

2 
nR R2 

Fig. 14. Alfven’s theorem for a more general geometry than in Fig. 12. Surfaces S1 and S2

bounded by perimeters P1 and P2 evolve to S′1 and S′2 in time dt following the motion of the fluid.

R1 and R2 denote the ribbons connecting the surfaces under time evolution. The magnetic flux
through the grey region stays the same for all times.

and permuting factors in the first term and using Stokes’ theorem in the second

term

dφi = dt

∫
Pi

( ~B × ~v) · d~̀+ dt

∫
Pi

(~v × ~B) · d~̀= 0 . (A6)

This proves that magnetic field lines do not cross neither the outer nor the inner

boundary as the annulus of perfectly conducting fluid moves outward. Magnetic

field lines are frozen into the annulus and move out with it, pushing out magnetic

field lines outside and leaving the interior field free.

For a more general geometry where the fluid velocity is not parallel to the area

being considered, as shown in Fig. 14 the proof is only slightly more complicated.

In addition to the flux through the surfaces S1 and S2 we need to consider also

the flux through the ribbons R1 and R2 shown in Fig. 14. It can be shown that

here also the flux through the multiply connected surface bounded by P1 and P2

is invariant under time evolution, and the flux in the interior of P2 remains zero at

all times.
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