Dynamic Hubbard models

Dynamic Hubbard models are extensions of the conventional Hubbard model that describe essential physics of correlated electrons not described by the conventional Hubbard model: namely, that not only the energy changes when an atomic orbital is doubly occupied, but the wavefunction also does! In particular, this incorporates in the model Hamiltonians the essential physical fact that holes are not like electrons.

The following papers describe our recent work on dynamic Hubbard models:

Effect of orbital relaxation on the band structure of cuprate superconductors and implications for the superconductivity mechanism, arXiv:1407.0042 (2014), Phys. Rev. B90, 184515 (2014)

Dynamic Hubbard model for solids with hydrogen-like atoms, arXiv:1406.7332 (2014), Phys. Rev. B 90, 104501 (2014).

Charge expulsion, charge inhomogeneity and phase separation in dynamic Hubbard models, arXiv:1307.6526, Phys. Rev. B 87, 184506 (2013) .

Dynamic Hubbard model: kinetic energy driven charge expulsion, charge inhomogeneity, hole superconductivity, and Meissner effect, arXiv:1302.4178 (2013), Physica Scripta 88, 035704 (2013).

Two-site dynamical mean field theory for the dynamic Hubbard model, G.H. Bach, JEH, F. Marsiglio, arXiv:1008.3905 (2010), Phys. Rev. B 82, 155122 (2010).

Dynamic Hubbard Model: Effect of Finite Boson Frequency , F. Marsiglio, R. Teshima, JEH, cond-mat/0307594 (2003).

Electronic dynamic Hubbard model: exact diagonalization study , cond-mat/0207369 (2002), Phys.Rev. B67, 035103 (2003).

Quasiparticle undressing in a dynamic Hubbard model: exact diagonalization study , cond-mat/0205006 (2002), Phys.Rev. B66, 064507 (2002).

Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model , cond-mat/0201005 (2002), Phys.Rev. B65, 214510 (2002).

Why holes are not like electrons: A microscopic analysis of the differences between holes and electrons in condensed matter , Phys.Rev. B 65, 184502 (2002), cond-mat/0109385 (2001).

Dynamic Hubbard Model , Phys. Rev. Lett. 87, 206402 (2001).

Superconductivity from Undressing. II. Single Particle Green's Function and Photoemission in Cuprates , cond-mat/0007328, Phys.Rev.B 62, 14498 (2000)

Superconductivity from Undressing , cond-mat/0007115, Phys.Rev.B 62, 14487 (2000)

Inapplicability of the Hubbard model for the description of real strongly correlated electrons , Physica B 199&200, 366 (1994)

Superconductors that change color when they become superconducting, , Physica C 201, 347 (1992).

Pairing of holes in a tight binding model with repulsive Coulomb interactions , Phys.Rev. B43, 11400 (1991).

Superconductivity in an oxygen hole metal , JEH and F. Marsiglio , Phys.Rev. B41, 2049 (1990).

Effective interactions in an oxygen hole metal , JEH and S. Tang, , Phys.Rev. B40, 2179 (1989).

Hole superconductivity in oxides , JEH and S. Tang, Sol.St. Comm. 69, 987 (1989).

Hole superconductivity , Phys.Lett. A 134, 451 (1989).

The following talk explains the justification and some properties of dynamic Hubbard models

The following papers describe work by others on dynamic Hubbard models and related models:

Interacting electrons in the solid state: the role of orbital relaxation, by A. Fortunelli and A. Painelli, Chem. Phys. Lett., 214, 402 (1993)

Charge states of strongly correlated 3d oxides: from typical insulator to unconventional electron-hole Bose liquid , by A.S. Moskvin, Low Temp. Phys. 33, 234 (2007).

Sign change of the extended s-wave pairing vertex in the dynamic Hubbard model: A quantum Monte Carlo study, by Bouadim, K ; Enjalran, M ; Hebert, F ; Batrouni, GG ; Scalettar, RT, Phys. Rev. B77, 014516 (2008).

Electron-Hole Asymmetry in the Dynamic Hubbard Model, by Bach, G. H.; Marsiglio, F., JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM Volume: 24 Issue: 5 Pages: 1571-1575 (2011).

Optical conductivity for a dimer in the dynamic Hubbard model, by Bach, G. H.; Marsiglio, F., Phys. Rev. B Volume: 85, 15513 (2012)

Dynamical mean field theory for the Dynamic Hubbard model, by G. H. Bach, Thesis, University of Alberta, 2011.

Dynamical screening effects in correlated materials: Plasmon satellites and spectral weight transfers from a Green's function ansatz to extended dynamical mean field theory, by M. Casula, A. Rubtsov and S. Biermann, Phys. Rev. B Volume:85, 035115 (2012).

Optical Properties of a Vibrationally Modulated Solid State Mott Insulator, by S. Kaiser, S. R. Clark, D. Nicoletti, G. Cotugno, R. I. Tobey, N. Dean, S. Lupi, H. Okamoto, T. Hasegawa, D. Jaksch & A. Cavalleri, Scientific Reports 4, Article number: 3823 doi:10.1038/srep03823 (2014).

Effective doublon and hole temperatures in the photo-doped dynamic Hubbard model, by Philipp Werner, Martin Eckstein, Struct. Dyn. 3, 023603 (2016).

For more information see our web pages on hole superconductivity and on superconductivity from undressing