"User defined background 1" (UDB_1) for the processing and interpretation of magnetic susceptibility data of the world's first and only room temperature superconductor reported in Nature volume 586, pages 373–377 (2020)

This is work in collaboration with Dirk van der Marel, see also Dirk's page on UDB_1.

September 26, 2022: Nature retracts the paper due to "processing issues" of the raw data, without questioning the faithfulness of the raw data. All the authors disagree with the retraction, and "will re-submit the paper with the raw data plot of susceptibility per Nature’s recommendation."

August 2022:

While Nature is working with the authors, I would like to share the information in this webpage for the benefit of the world-wide community of Nature readers that is not.

6 months ago, Ranga Dias and Ashkan Salamat explained to the world through arXiv:2201.11883v1 how they constructed a "user defined background signal" (UDB_1) to be subtracted from the raw ac susceptibility data they had reported in arXiv:2111.15017 to obtain the "superconducting signal" published in Nature 586, 373 (2020), using the profile of the same raw data from which they would subtract. This innovative way of background subtraction, akin to a dog chasing its own tail, has not yet been fully adopted by the high pressure superconductivity community to my knowledge but is being seriously considered.

While I (and others) have not been able to figure out from reading and rereading arXiv:2201.11883v1 what UDB_1 actually is and how it is constructed, we have now been reassured by Ranga Dias in the question/answer period after a talk he recently gave at CDRTS 2022, that all the information needed to understand UDB_1 is indeed contained in that arxiv paper. The part of the Ranga Dias talk where he answers questions about UDB_1 is in the 2-minute video available by clicking on the image below:

The reason for why this sheds clear light into the understanding of Dias and Salamat's claim of room temperature superconductivity is explained in this 2-minute video:

Dias decided to not explain further, as seen in this 1 minute video. For a short detailed self-contained explanation that sheds definitive light on these issues, that any reader can quantitatively reproduce for him/herself, see a 4-page writeup by clicking on the image below:



To reproduce yourself the calculations done in that paper, i.e. calculate a voltage that was supposedly measured and reported as "raw data", go to this web page.

For an extended in-depth analysis of these issues please see IJMPB 2375001 (2022), and MRE 7, 048401 (2022), and EPL 137 36001 (2022).

The following images show two decompositions of the same superconducting signal for 160 GPa reported in the Nature paper. The left images are reality according to arXiv:2111.15017, arXiv:2201.11883v1, the right images are reality according to IJMPB 2375001 (2022). It is mathematically impossible that both describe reality.
Low temperature parts, amplified
High temperature parts, amplified






>







web counter