Department of Physics, University of California, San Diego

E-mail: jhirsch@ucsd.edu

Tel: 858-534-3931

ResearcherId

Superconducting materials: the w

Moment of inertia of superconductors

Spinning superconductors and ferromagnets

Why only hole conductors can be superconductors

Explanation of the Meissner effect

Momentum of superconducting electrons

Materials and mechanisms of hole superconductivity

The Bohr superconductor

H

The London moment

Dynamic Hubbard model

Mean inner potential, diamagnetism and superconductivity

Kinetic energy driven charge expulsion...

Kinetic energy driven superfluidity...

Kinetic energy driven superconductivity... Physica C Special Issue on Superconducting Materials

Kinetic energy driven ferromagnetism... Vol. 514 (2015)

Double-valuedness of the electron wave function ... Introduction and overview: pdf with links to papers

... rotational zero-point motion of electrons in rings Table of Contents (pdf) with links to papers

Spin-split states in aromatic molecules and superconductors

Electromotive forces and the Meissner effect puzzle

Spin Meissner effect, and electrodynamics of superconductors

Do superconductors violate Lenz's law?

What about angular momentum conservation?

What about BCS theory? Phys. Scr. 80 (2009) 035702

Meissner effect puzzle

h-alpha index

hbar index

Does the h-index have predictive power ?

PNAS **104**, 19187 (2007)

Link to h-index paper,
PNAS **102**, 16569 (2005)

Spin Hall Effect and
spin current papers:

Phys.Rev.Lett.83, 1834 (1999),
cond-mat/9906160 (1999),

Phys.Rev.B 60, 14787 (1999),
cond-mat/9910408 (1999)

Spin currents in superconductors, Phys. Rev. B 71, 184521 (2005)

APS Outstanding Referees

Physics 2D

Spin-Split States in Metals. Phys. Rev. B **41**, 6820 (1990).

Weak Ferromagnetism in a Band Model: Application to Sc3In.
Phys. Rev. B
**44**, 675 (1991).

Electron-hole asymmetry: the key to superconductivity , in "High-Temperature Superconductivity", ed. by J. Ashkenazi et al, Plenum Press, New York, 1991, p.295.

Apparent violation of the conductivity sum rule in certain superconductors,
Physica
** C199**, 305 (1992).

Superconductors that Change Color
when they Become Superconducting.
Physica
** C201**, 347 (1992).

Superconductivity in the Transition Metal Series.
With X.Q. Hong., Phys. Rev.
B **46**, 14702 (1992).

Color change and other unusual spectroscopic features predicted by the
model of hole superconductivity
, J. Phys.
Chem. Solids **54**, 1101 (1993).

Polaronic superconductivity in the absence of electron-hole symmetry.
Phys. Rev. **B47**, 5351 (1993).

Thermoelectric Power of Superconductive Tunnel Junctions.
Phys. Rev.
Lett. **72**, 558 (1994).

Electron-hole asymmetric polarons , in "Polarons and Bipolarons in high Tc Superconductors and Related Materials", ed. by E.K.H. Salje, A.S. Alexandrov and W.Y. Liang, Cambridge Unive rsity Press, Cambridge, 1995, p. 234.

Pairing in a tight binding model with occupation-dependent
hopping rate: exact diagonalization study.
With
H.Q. Lin ,
Phys. Rev. B
**52**, 16155 (1995).

Metallic ferromagnetism in a single-band model: Effect of band
filling and Coulomb interactions.
With J.C. Amadon.
Phys. Rev. B
**54**, 6364 (1996).

Possible contribution of direct exchange to the superfluidity of 3He.
Phys. Rev. B
**55**, 8997 (1997).

Correlations between normal-state properties and superconductivity.
Phys. Rev. B
**55**, 9007 (1997).

Metallic ferromagnetism in a band model: intra-atomic versus
interatomic exchange
Phys. Rev. B
**56**, 11022(1997).

Thermoelectric effect in superconductive tunnel junctions
Phys. Rev. B **58**, 8727 (1998)

Metallic ferromagnetism from kinetic-energy gain: The case of EuB6
Phys. Rev. B **59**, 436 (1999)

Metallic ferromagnetism without exchange splitting
Phys. Rev. B **59**, 6256 (1999)

Slope of the superconducting gap function in
$Bi_2Sr_2CaCu_2O_{8+\delta}$ measured by vacuum tunneling
spectroscopy
Phys. Rev. B ** 59 **, 11962 (1999).

Spin Hall effect
Phys. Rev. Lett. ** 83 **, 1834 (1999).

Overlooked contribution to the Hall effect in ferromagnetic metals
Phys.Rev.B **60**, 14787 (1999)

Where is 99% of the condensation energy of Tl_2Ba_2CuO_y coming from?
With
F. Marsiglio ,
cond-mat/9908322, Physica C **331**, 150 (2000).

Optical sum rule violation, superfluid weight and condensation
energy in the cuprates
With
F. Marsiglio ,
cond-mat/0004496, Phys. Rev. B **62**, 15131 (2000).

Anisotropic penetration depth and optical sum rule violation in La2-xSrxCuO4
With
F. Marsiglio ,
cond-mat/0005002, presented at the 6th International Conference on Materials and
Mechanisms of Superconductivity, Houston, February 2000,
Physica C **341-348**, 2217 (2000).

Hole superconductivity from kinetic energy gain
,cond-mat/0005033, presented at the 6th International Conference
on Materials and Mechanisms of Superconductivity, Houston, February 2000,
Physica C **341-348**, 213 (2000).

Superconductivity and Ferromagnetism from Effective Mass Reduction
, cond-mat/0007453, presented at the 6th International Conference
on Materials and Mechanisms of Superconductivity, Houston, February 2000,
Physica C **341-348**, 211 (2000).

Superconductivity from Undressing
,
cond-mat/0007115,
Phys.Rev.B **62**, 14487 (2000)

Superconductivity from Undressing. II.
Single Particle Green's Function and Photoemission in Cuprates
,
cond-mat/0007328,
Phys.Rev.B **62**, 14498 (2000)

Ferromagnetism from Undressing
,
cond-mat/0007454,
Phys.Rev.B **62**, 14131 (2000)

Consequences of charge imbalance in superconductors within the theory
of hole superconductivity
,
cond-mat/0012517, Phys.Lett.A **281**, 44 (2001)

Superconductivity from Hole Undressing
,
cond-mat/0102136, Physica C **364-365**, 37 (2001).
Presented at the Third International Conference on New Theories,
Discoveries, and Applications of
Superconductors and Related Materials (New3SC-3), Hawaii, January 2001.

Hole Superconductivity in $Mg B_2$: a high $T_c$ cuprate without Cu , cond-mat/0102115 , Phys. Lett. A282, p.392-398 (2001).

Electron-Phonon or Hole Superconductivity in $MgB_2$? , With F. Marsiglio , cond-mat/0102479 (2001), Phys.Rev. B 64, 144523 (2001).

Hole Superconductivity in MgB_2, Cuprates, and Other Materials , cond-mat/0106310 (2001) , , in "Studies of High Temperature Superconductors", ed. by A. Narlikar, Nova Sci. Pub., New York, Vol. 38, p. 49 (2002).

Comment on "Discovery of microscopic electronic inhomogeneity in the high-$T_c$ superconductor $Bi_2Sr_2CaCu_2O_{8+x}$", cond-mat/0107347 , cond-mat/0107372 (2001).

Dynamic Hubbard Model , Phys. Rev. Lett. 87, 206402 (2001).

Why holes are not like electrons: A microscopic analysis of the differences between holes and electrons in condensed matter , Phys.Rev. B 65, 184502 (2002), cond-mat/0109385 (2001).

Quantum Monte Carlo and exact diagonalization study of a dynamic Hubbard model , cond-mat/0201005 (2002), Phys.Rev. B65, 214510 (2002).

The True Colors of Cuprates , Science 295, 2226 (2002)

Quasiparticle undressing in a dynamic Hubbard model: exact diagonalization study , cond-mat/0205006 (2002), Phys.Rev. B66, 064507 (2002).

Electronic dynamic Hubbard model: exact diagonalization study , cond-mat/0207369 (2002), Phys.Rev. B67, 035103 (2003).

Quasiparticle undressing: a new route to collective effects in solids , cond-mat/0211642 (2002), in "Concepts in Electron Correlation", ed. by A.C. Hewson and V. Zlatic, Kluwer Academic Publishers, Dordrecht, 2003, p. 371.

Electron-hole asymmetry and superconductivity , cond-mat/0211643, Phys.Rev.B 68, 012510 (2003).

Electron-hole asymmetry is the key to superconductivity , cond-mat/0301610, New3SC-4 meeting, San Diego, Jan. 16-21 2003, Int. J. Mod. Phys. B 17, 3236 (2003).

Superconductors as giant atoms predicted by the theory of hole superconductivity
,
cond-mat/0301611
, Phys.Lett.A **309**, 457 (2003).

Spontaneous spinning of a magnet levitating over a superconductor
, with D.J. Hirsch,
cond-mat/0303574 (2003), Physica C**398**, 8 (2003).

The Lorentz force and superconductivity
,
cond-mat/0305542, Phys.Lett.A **315**, 474 (2003).

Superconductors as giant atoms: qualitative aspects , cond-mat/0305574 (2003), AIP Conf. Proc. 695(1) 21 (17 Dec 2003).

Charge expulsion and electric field in superconductors
,
cond-mat/0308604, Phys.Rev. B **68**, 184502 (2003).

Dynamic Hubbard Model: Effect of Finite Boson Frequency
, F. Marsiglio, R. Teshima, JEH,
cond-mat/0307594 (2003), Phys.Rev. B **68**, 224507 (2003).

Predicted electric field near small superconducting ellipsoids
,
cond-mat/0312618 (2003), Phys.Rev.Lett. **92**, 016402 (2004).

Electrodynamics of superconductors
,
cond-mat/0312619 (2003), Phys.Rev. B ** 69**, 214515 (2004).

Spin currents in superconductors
,
cond-mat/0406489 (2004), Phys.Rev. B ** 71**, 184521 (2005).

The fundamental role of charge asymmetry in superconductivity , cond-mat/0407642 (Los Alamos), J. Phys. Chem. Solids 67, p.21 (2006), SNS'2004, Sitges,Spain, July 11-16,2004.

Reply to ``Comment on `Charge expulsion and electric field in superconductors' '', by T. Koyama
,
cond-mat/0412091 (2004), Phys.Rev. B ** 70**, 226504 (2004).

Why holes are not like electrons. II. The role of the electron-ion interaction.
,
Phys.Rev.B **71**, 104522 (2005), cond-mat/0504013 (2005).

Explanation of the Tao effect
,
cond-mat/0502626 (2005)
, Phys.Rev.Lett. **94**, 187001 (2005).

An index to quantify an individual's scientific output , physics/0508025 (2005), Proc Natl Acad Sci USA 102, 16569 (2005).

Spin currents, relativistic effects and the Darwin interaction in the theory of hole superconductivity , cond-mat/0508471 (2005), Phys.Lett. A 345, 453 (2005)

The fundamental role of charge asymmetry in superconductivity, Jour. Phys. Chem. Solids 67, 21 (2006).

Ionizing radiation from superconductors in the theory of hole superconductivity, J. Phys. Cond. Matter 19, 125217 (2007).

Do superconductors violate Lenz's law? Body rotation under field cooling and theoretical implications, Phys.Lett. A366, 615 (2007).

Does the h-index have predictive power? , arXiv:0708.0646 (2007), Proc Natl Acad Sci USA 104, 19193 (2007).

Spin Meissner Effect in Superconductors and the Origin of the Meissner Effect , arXiv:0710.0876 (2007), Europhys. Lett. 81, 67003 (2008).

Electrodynamics of spin currents in superconductors , arXiv:0803.1198 (2008), Ann. Phys. (Berlin) 17, 380 (2008).

The missing angular momentum of superconductors , arXiv:0803.2054, (2008), J. Phys. Cond. Matt. 20, 235233 (2008).

Hole superconductivity in Arsenic-Iron compounds . With F. Marsiglio , arXiv:0804.0002, (2008), doi:10.1016/j.physc.2008.05.051, Physica C 468, 1047 (2008).

Charge expulsion, Spin Meissner effect, and charge inhomogeneity in superconductors , arXiv:0810.5127, (2008), Journal of Superconductivity and Novel Magnetism 22, 131 (2009).

Why holes are not like electrons. III. How holes in the normal state turn into electrons in the superconducting state, arXiv:0901.3612 (2009), Int. J. Mod. Phys. B 23, 3035 (2009), Erratum.

BCS theory of superconductivity: it is time to question its validity, Physica Scripta 80 (2009) 035702.

Explanation of the Meissner Effect and Prediction of a Spin Meissner Effect in Low and High $T_c$ Superconductors, Physica C 470, S955 (2010).

Why non-superconducting metallic elements become superconducting under high pressure. With J.J. Hamlin, Physica C 470, S937 (2010).

Electromotive forces and the Meissner effect puzzle, Journal of Superconductivity and Novel Magnetism 23, 309 (2010) dx.doi.org/10.1007/s10948-009-0531-4.

A new basis set for the description of electrons in superconductors , Physics Letters A 373, 1880 (2009) dx.doi.org/doi:10.1016/j.physleta.2009.03.058.

Why holes are not like electrons. IV. Hole undressing and spin current in the superconducting state , Int. Jour. Mod. Phys. B 24, 3627 (2010), arXiv 1002.2688.

Hole core in superconductors and the origin of the Spin Meissner effect, Physica C 470, 635 (2010) dx.doi.org/10.1016/j.physc.2010.06.005.

Spin-split states in aromatic molecules and superconductors, arXiv:1007.2813, Phys. Lett. A 374, 3777 (2010).

Double-valuedness of the electron wave function and rotational zero-point motion of electrons in rings, arXiv:1007.2834, Mod. Phys. Lett. B 24, 2201 (2010).

Kinetic energy driven superconductivity, the origin of the Meissner effect, and the reductionist frontier, arXiv:1103.3912 (2011), Int. J. Mod. Phys. B 25, 1173 (2011).

Materials and mechanisms of hole superconductivity, arXiv:1104.1624 (2011), Physica C 472, 78 (2012).

Meissner effect, Spin Meissner effect and charge expulsion in superconductors , arXiv:1106.5311 (2011), J. Sup. Nov. Mag. 26, 2239 (2013).

Did Herbert FrÃ¶hlich predict or postdict the isotope effect in superconductors? , arXiv:1108.3835 (2011), Physica Scripta 84, 045705 (2011).

Kinetic energy driven superconductivity and superfluidity , arXiv:1109.0504 (2011), Mod. Phys. Lett. B 25, 2219 (2011).

The origin of the Meissner effect in new and old superconductors , arXiv:1201.0139 (2011), Physica Scripta 85, 035704 (2012).

Experimental consequences of predicted charge rigidity of superconductors, arXiv:1201.0139, Physica C 478, 42 (2012).

Correcting 100 years of misunderstanding: electric fields in superconductors, hole superconductivity, and the Meissner effect, arXiv:1202.1851, J Supercond Nov Magn 25, 1357 (2012).

Spherical agglomeration of superconducting and normal microparticles with and without applied electric field, R.S.B. Ghosh and J.E. Hirsch, arXiv:1207.3773, Phys. Rev. B 86, 054511 (2012).

Kinetic energy driven superfluidity and superconductivity and the origin of the Meissner effect, arXiv:1210.1578 (2012), Physica C 493, 18 (2013) .

Prediction of unexpected behavior of the mean inner potential of superconductors, arXiv:1301.4999, Physica C 490, 1 (2013) .

Dynamic Hubbard model: kinetic energy driven charge expulsion, charge inhomogeneity, hole superconductivity, and Meissner effect, arXiv:1302.4178 (2013), Physica Scripta 88, 035704 (2013) .

Apparent increase in the thickness of superconducting particles at low temperatures measured by electron holography, arXiv:1303.2710 (2013), Ultramicroscopy 133, 67-71 (2013) .

Charge expulsion, charge inhomogeneity and phase separation in dynamic Hubbard models, arXiv:1307.6526, Phys. Rev. B 87, 184506 (2013) .

Superconductivity, diamagnetism, and the mean inner potential of solids, arXiv:1307.4438 (2013), Annalen der Physik 526, 63 (2014).

The London moment: what a rotating superconductor reveals about superconductivity, arXiv:1310.3834 (2013), Physica Scripta 89, 015806 (2014).

Dynamic Hubbard model for solids with hydrogen-like atoms, arXiv:1406.7332 (2014), Phys. Rev. B90, 104505 (2014).

Effect of orbital relaxation on the band structure of cuprate superconductors and implications for the superconductivity mechanism, arXiv:1407.0042 (2014), Phys. Rev. B90, 184515 (2014).

Proposed experimental test of an alternative electrodynamic theory of superconductors, arXiv:1409.0869 (2014), Physica C 508, 21 (2015) .

Hole superconductivity in H2S and other sulfides under high pressure, with F. Marsiglio, arXiv:1412.6251 (2014), Physica C 511, 45 (2015).

Absence of Josephson coupling between certain superconductors, arxiv: 1502.07059 (2015), Europhys. Lett. 109, 67005 (2015).

Dynamics of the normal-superconductor phase transition and the puzzle of the Meissner effect , arxiv: 1504.05190 (2015), Annals of Physics 362, 1 (2015).

On the dynamics of the Meissner effect, arxiv: 1508.03307 (2015), Physica Scripta 91, 035801 (2016).

The Bohr superconductor, arxiv: 1512.05014 (2015), Europhys. Lett. 113, 37001 (2016).

The disappearing momentum of the supercurrent in the superconductor to normal phase transformation, arxiv:1604.03565 (2016), Europhys. Lett. 114, 57001 (2016) .

On the reversibitity of the Meissner effect and the angular momentum puzzle, arXiv:1604.07443 (2016), Annals of Physics 373, 230 (2016) .

Proposed experimental test of the theory of hole superconductivity, Physica C 525, 44 (2016).

What is the speed of the supercurrent in superconductors?, arXiv:1605.09469 (2016).

Corrigendum on "On the dynamics of the Meissner effect", arXiv:1609.06299 (2016), Physica Scripta 91, 099501 (2016).

Momentum of superconducting electrons and the explanation of the Meissner effect, arXiv:1609.08451 (2016), Phys. Rev. B 95, 014503 (2017).

Entropy generation and momentum transfer in the superconductor-normal and normal-superconductor phase transformations and the consistency of the conventional theory of superconductivity, arxiv: 1703.04404 (2017), Int. J. Mod. Phys. Vol. 32, 1850158 (2018).

Why only hole conductors can be superconductors, Proc. SPIE 10105, Oxide-based Materials and Devices VIII, 101051V (March 7, 2017), arXiv:1703.09777.

Towards an understanding of hole superconductivity, Springer Series in Materials Science 255, 99 (2017)----- arXiv:1704.07452

Spinning Superconductors and Ferromagnets, Acta Physica Polonica A 133, 350 (2018)

Moment of inertia of superconductors, arXiv:1808.02857 (2018), Physics Letters A 383, 83 (2019)

Defying inertia: how rotating superconductors generate magnetic fields, arXiv:1812.06780 (2018), Annalen der Physik (2019).

Understanding electron-doped cuprate superconductors as hole superconductors , with F. Marsiglio, arXiv:1904.09164 (2019), Physica C 564, 29 (2019)

Hole superconductivity in infinite-layer nickelates , with F. Marsiglio, arXiv:1909.00509 (2019), Physica C 566, 1353534 (2019)

Alfven-like waves along normal-superconductor phase boundaries , arXiv:1906.03083 (2019), Physica C 564, 42 (2019)

Thermodynamic inconsistency of the conventional theory of superconductivity, arXiv:1907.11273 (2019), IJMPB (2020)))

Superconducting materials: the w*hole* story,
arXiv:1908.04419
(2019),
J Supercond Nov Magn (2019).

How Alfven's theorem explains the Meissner effect, arXiv:1909.11443 (2019), MPLB (2020).

Inconsistency of the conventional theory of superconductivity, arXiv:1909.12786 (2019), EPL 130, 17006 (2020).

Joule heating in the normal-superconductor phase transition in a magnetic field,
arXiv:2001.07509
(2020).